File size: 7,896 Bytes
30ff08a
5d16acd
30ff08a
5d16acd
30ff08a
 
 
 
 
 
 
 
 
2bd1abe
 
 
 
 
 
30ff08a
80492f0
30ff08a
80492f0
30ff08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e41a8b4
 
 
30ff08a
 
e41a8b4
 
 
30ff08a
 
e41a8b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30ff08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80492f0
30ff08a
 
 
80492f0
30ff08a
 
 
 
 
 
 
 
e41a8b4
30ff08a
 
 
 
 
 
 
 
 
 
 
242998f
 
 
 
 
 
 
 
 
 
 
 
e41a8b4
 
 
2bd1abe
242998f
e41a8b4
30ff08a
a007f98
30ff08a
e41a8b4
 
30ff08a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import paddlehub as hub

ernie_zeus = hub.Module(name='ernie_zeus')


def inference(task: str,
              text: str,
              min_dec_len: int = 2,
              seq_len: int = 512,
              topp: float = 0.9,
              penalty_score: float = 1.0):

    func = getattr(ernie_zeus, task)
    try:
        result = func(text, min_dec_len, seq_len, topp, penalty_score)
        return result
    except Exception as error:
        return str(error)

title = "ERNIE-Zeus"

description = "ERNIE-Zeus model, which supports Chinese text generates task."

css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .prompt h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
"""

block = gr.Blocks(css=css)

examples = [
    [
        'text_summarization',
        '在芬兰、瑞典提交“入约”申请近一个月来,北约成员国内部尚未对此达成一致意见。与此同时,俄罗斯方面也多次对北约“第六轮扩张”发出警告。据北约官网显示,北约秘书长斯托尔滕贝格将于本月12日至13日出访瑞典和芬兰,并将分别与两国领导人进行会晤。',
        4, 512, 0.0, 1.0
    ],
    [
        'copywriting_generation',
        '芍药香氛的沐浴乳',
        32, 512, 0.9, 1.2
    ],
    [
        'novel_continuation',
        '昆仑山可以说是天下龙脉的根源,所有的山脉都可以看作是昆仑的分支。这些分出来的枝枝杈杈,都可以看作是一条条独立的龙脉。',
        2, 512, 0.9, 1.2
    ],
    [
        'answer_generation',
        '杜鹃花怎么养?',
        2, 512, 0.9, 1.2
    ],
    [
        'couplet_continuation',
        '天增岁月人增寿',
        2, 512, 0.9, 1.0
    ],
    [
        'composition_generation',
        '诚以养德,信以修身',
        128, 512, 0.9, 1.2
    ],
    [
        'text_cloze',
        '她有着一双[MASK]的眼眸。',
        1, 512, 0.9, 1.0
    ],
]

with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                  margin-bottom: 10px;
                  justify-content: center;
                "
              >
              <img src="https://user-images.githubusercontent.com/22424850/187387422-f6c9ccab-7fda-416e-a24d-7d6084c46f67.jpg" alt="Paddlehub" width="40%">
              </div> 
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                  margin-bottom: 10px;
                  justify-content: center;
                ">
              <h1 style="font-weight: 900; margin-bottom: 7px;">
                  ERNIE-Zeus Demo
              </h1>
              </div> 
              <p style="margin-bottom: 10px; font-size: 94%">
                ERNIE-Zeus is a state-of-the-art Chinese text generates model.
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):
                text = gr.Textbox(
                    label="input_text",
                    max_lines=1,
                    placeholder="Enter your Chinese prompt",
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Generate text").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )
        task = gr.Dropdown(label="task",
                           choices=[
                               'text_summarization',
                               'copywriting_generation',
                               'novel_continuation',
                               'answer_generation',
                               'couplet_continuation',
                               'composition_generation',
                               'text_cloze'
                           ],
                           value='text_summarization')

        min_dec_len = gr.Slider(minimum=1, maximum=511, value=1, label="min_dec_len", step=1, interactive=True)
        seq_len = gr.Slider(minimum=2, maximum=512, value=128, label="seq_len", step=1, interactive=True)
        topp = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="topp", step=0.01, interactive=True)
        penalty_score = gr.Slider(minimum=1.0, maximum=2.0, value=1.0, label="penalty_score", step=0.01, interactive=True)

        text_gen = gr.Text(label="generated_text")

        ex = gr.Examples(examples=examples, fn=inference, inputs=[task, text, min_dec_len, seq_len, topp, penalty_score], outputs=text_gen, cache_examples=False)

        text.submit(inference, inputs=[task, text, min_dec_len, seq_len, topp, penalty_score], outputs=text_gen)
        btn.click(inference, inputs=[task, text, min_dec_len, seq_len, topp, penalty_score], outputs=text_gen)
        gr.HTML(
            """
                <div class="footer">
                    <p>Model by <a href="https://github.com/PaddlePaddle/PaddleHub" style="text-decoration: underline;" target="_blank">PaddleHub</a> and <a href="https://wenxin.baidu.com" style="text-decoration: underline;" target="_blank">文心大模型</a> - Gradio Demo by 🤗 Hugging Face
                    </p>
                </div>
                 
           """
        )

block.queue(max_size=100000, concurrency_count=100000).launch()