Spaces:
Running
Running
# https://python.langchain.com/docs/tutorials/rag/ | |
import gradio as gr | |
from langchain import hub | |
from langchain_chroma import Chroma | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_community.embeddings import HuggingFaceInstructEmbeddings | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_mistralai import ChatMistralAI | |
import requests | |
from langchain_community.document_loaders import WebBaseLoader | |
import bs4 | |
from langchain_core.rate_limiters import InMemoryRateLimiter | |
from urllib.parse import urljoin | |
# Define a limiter to avoid rate limit issues with MistralAI | |
rate_limiter = InMemoryRateLimiter( | |
requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second | |
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request, | |
max_bucket_size=10, # Controls the maximum burst size. | |
) | |
# Function to get all the subpages from a base url | |
def get_subpages(base_url): | |
visited_urls = [] | |
urls_to_visit = [base_url] | |
while urls_to_visit: | |
url = urls_to_visit.pop(0) | |
if url in visited_urls: | |
continue | |
visited_urls.append(url) | |
response = requests.get(url) | |
soup = bs4.BeautifulSoup(response.content, "html.parser") | |
for link in soup.find_all("a", href=True): | |
full_url = urljoin(base_url, link['href']) | |
if base_url in full_url and full_url.endswith(".html") and full_url not in visited_urls: | |
urls_to_visit.append(full_url) | |
visited_urls = visited_urls[1:] | |
return visited_urls | |
# Get urls | |
base_url = "https://camels.readthedocs.io/en/latest/" | |
urls = get_subpages(base_url) | |
# Load, chunk and index the contents of the blog. | |
loader = WebBaseLoader(urls) | |
docs = loader.load() | |
# Join content pages for processing | |
def format_docs(docs): | |
return "\n\n".join(doc.page_content for doc in docs) | |
# Create a RAG chain | |
def RAG(llm, docs, embeddings): | |
# Split text | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
splits = text_splitter.split_documents(docs) | |
# Create vector store | |
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings) | |
# Retrieve and generate using the relevant snippets of the documents | |
retriever = vectorstore.as_retriever() | |
# Prompt basis example for RAG systems | |
prompt = hub.pull("rlm/rag-prompt") | |
# Create the chain | |
rag_chain = ( | |
{"context": retriever | format_docs, "question": RunnablePassthrough()} | |
| prompt | |
| llm | |
| StrOutputParser() | |
) | |
return rag_chain | |
# LLM model | |
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter) | |
# Embeddings | |
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1" | |
# embed_model = "nvidia/NV-Embed-v2" | |
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model) | |
# RAG chain | |
rag_chain = RAG(llm, docs, embeddings) | |
def handle_prompt(message, history): | |
try: | |
# Stream output | |
out="" | |
for chunk in rag_chain.stream(message): | |
out += chunk | |
yield out | |
except: | |
raise gr.Error("Requests rate limit exceeded") | |
greetingsmessage = "Hi, I'm the CAMELS DocBot, I'm here to assist you with any question related to the CAMELS simulations documentation" | |
example_questions = [ | |
"How can I read a halo file?", | |
"Which simulation suites are included in CAMELS?", | |
"Which are the largest volumes in CAMELS simulations?", | |
"Write a complete snippet of code getting the power spectrum of a simulation" | |
] | |
# Define Gradio interface | |
demo = gr.ChatInterface(handle_prompt, type="messages", title="CAMELS DocBot", examples=example_questions, theme=gr.themes.Soft(), description=greetingsmessage)#, chatbot=chatbot) | |
demo.launch() |