Spaces:
Running
Running
File size: 19,263 Bytes
bef3741 1e6c6f2 9fd65e9 bef3741 64322bd 813f6fc 64322bd 1e6c6f2 813f6fc 1e6c6f2 0550b9b ceffbde 1e6c6f2 813f6fc 1e6c6f2 0550b9b ceffbde 813f6fc ceffbde 813f6fc ceffbde 0550b9b 1e6c6f2 0550b9b ec75df1 8d8fe97 f2555e6 4e8b643 f2555e6 0550b9b 1e6c6f2 0550b9b 813f6fc 0550b9b 813f6fc 81a32a1 813f6fc 81a32a1 813f6fc 81a32a1 9fd65e9 813f6fc ec75df1 813f6fc 81a32a1 9fd65e9 81a32a1 9fd65e9 81a32a1 9fd65e9 0f7a8f6 9fd65e9 ac83949 16b72e9 ac83949 16b72e9 ac83949 9fd65e9 813f6fc 1e6c6f2 ec75df1 ceffbde 0f7a8f6 ceffbde bef3741 64322bd bef3741 64322bd 813f6fc 8d8fe97 e6c38c3 4beeeb9 813f6fc 16b72e9 813f6fc 16b72e9 813f6fc 16b72e9 813f6fc 16b72e9 813f6fc ec75df1 813f6fc 16b72e9 c4dec75 813f6fc ac83949 813f6fc 4beeeb9 813f6fc 4beeeb9 813f6fc ec75df1 64322bd 0550b9b ceffbde 64322bd 1e6c6f2 81a32a1 1e6c6f2 64322bd 813f6fc 64322bd ceffbde 64322bd 9fd65e9 0550b9b 64322bd 1e6c6f2 0550b9b ceffbde 64322bd ceffbde 5c4ad82 ceffbde 64322bd bef3741 64322bd bef3741 64322bd ec75df1 16b72e9 813f6fc ec75df1 64322bd ceffbde 64322bd ec75df1 9fd65e9 0550b9b 64322bd ceffbde 0f91f56 ceffbde 64322bd 9fd65e9 64322bd 1e6c6f2 64322bd 9ec2497 64322bd 9ec2497 64322bd 0550b9b 64322bd 813f6fc ec75df1 813f6fc 64322bd 0550b9b 64322bd 9ec2497 64322bd bef3741 0550b9b 64322bd 0550b9b ec75df1 0550b9b ec75df1 0550b9b 64322bd 0550b9b ec75df1 0550b9b 64322bd 0f91f56 64322bd 1e6c6f2 c341f98 4beeeb9 a8a3525 4beeeb9 e6c38c3 813f6fc ec75df1 4beeeb9 ec75df1 0550b9b ec75df1 4beeeb9 ec75df1 813f6fc 0550b9b 4beeeb9 0550b9b 1e6c6f2 0550b9b 813f6fc 0550b9b 8d8fe97 be15ae6 813f6fc 0550b9b 64322bd 1e6c6f2 9ec2497 813f6fc 64322bd ec75df1 9ec2497 1e6c6f2 64322bd 0550b9b 9ec2497 81a32a1 1e6c6f2 64322bd 813f6fc 1e6c6f2 64322bd 0550b9b 813f6fc 0550b9b e6c38c3 ac83949 9fd65e9 ac83949 9fd65e9 4beeeb9 e6c38c3 4beeeb9 e6c38c3 4beeeb9 e6c38c3 0f7a8f6 ac83949 4beeeb9 0f7a8f6 4beeeb9 0f7a8f6 05bf4a2 1e6c6f2 64322bd 4beeeb9 813f6fc 64322bd 813f6fc 64322bd 4beeeb9 813f6fc 64322bd 1e6c6f2 bef3741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import os
import json
import re
import gradio as gr
from openai import OpenAI
##############################################################################
# 1. 读取外部文件
##############################################################################
try:
with open("furry_species.json", "r", encoding="utf-8") as ff:
FURRY_DATA = json.load(ff)
except:
FURRY_DATA = {}
try:
with open("gender_rules.json", "r", encoding="utf-8") as gf:
GENDER_RULES = json.load(gf)
except:
GENDER_RULES = {}
try:
with open("transform_rules.json", "r", encoding="utf-8") as tf:
TRANSFORM_DICT = json.load(tf)
except:
TRANSFORM_DICT = {}
##############################################################################
# 2. 多级菜单函数
##############################################################################
def get_top_categories(furry_data):
return sorted(list(furry_data.keys()))
def get_sub_categories(furry_data, top_category):
if top_category in furry_data:
return sorted(list(furry_data[top_category].keys()))
return []
def get_species_list(furry_data, top_category, sub_category):
if top_category in furry_data and sub_category in furry_data[top_category]:
species = furry_data[top_category][sub_category]
# 检查 species 是否是列表,并且每个元素是否有 "Name" 字段
if isinstance(species, list) and all(isinstance(item, dict) and "Name" in item for item in species):
return [item ["Name"] for item in species]
else:
print(f"[DEBUG] Unexpected structure for species: {species}")
return []
##############################################################################
# 3. 合并规则文本
##############################################################################
def merge_transform_rules_into_prompt(rules_json):
if not rules_json:
return "(No transform rules loaded)"
gt = rules_json.get("gender_transform", {})
sp = rules_json.get("shared_preferences", {})
td = rules_json.get("table_details", {})
text_parts = []
text_parts.append("==== GENDER TRANSFORM RULES ====")
text_parts.append(str(gt))
text_parts.append("==== SHARED PREFERENCES ====")
text_parts.append(str(sp))
text_parts.append("==== TABLE DETAILS (PRO ACTIONS) ====")
text_parts.append(str(td))
return "\n".join(text_parts)
RULES_TEXT_FULL = merge_transform_rules_into_prompt(TRANSFORM_DICT)
##############################################################################
# 4. 强制替换:根据 override_conflicting_descriptors
##############################################################################
transform_map = {
"Trans_to_Male": "female_to_male",
"Trans_to_Female": "male_to_female",
"Trans_to_Mannequin": "any_to_genderless",
"Trans_to_Intersex": "any_to_intersex",
"Trans_to_Furry": "trans_to_furry"
}
def forced_replace(prompt, direction):
if not TRANSFORM_DICT:
return prompt
override_section = TRANSFORM_DICT.get("override_conflicting_descriptors", {})
replacements = override_section.get(direction, {})
if not replacements:
return prompt
for old, new in replacements.items():
pattern = r"(?i)\b" + re.escape(old) + r"\b"
prompt = re.sub(pattern, new, prompt)
# 针对复杂句子的补充替换
if direction == "Trans_to_male":
# 女性到男性
prompt = re.sub(r"\bshe\b", "he", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bher\b", "his", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bherself\b", "himself", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bwomen\b", "men", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\blady\b", "gentleman", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bqueen\b", "king", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bfemale\b", "male", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bgirl\b", "boy", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bprincess\b", "prince", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bactress\b", "actor", prompt, flags=re.IGNORECASE)
elif direction == "Trans_to_female":
# 男性到女性
prompt = re.sub(r"\bhe\b", "she", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bhis\b", "her", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bhimself\b", "herself", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bmen\b", "women", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bgentleman\b", "lady", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bking\b", "queen", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bmale\b", "female", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bboy\b", "girl", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bprince\b", "princess", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bactor\b", "actress", prompt, flags=re.IGNORECASE)
elif direction == "Trans_to_mannequin":
# 转换为无性别或人偶化
prompt = re.sub(r"\bshe\b|\bhe\b", "it", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bher\b|\bhis\b", "its", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bherself\b|\bhimself\b", "itself", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bwoman\b|\bman\b", "mannequin-like figure", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bgirl\b|\bboy\b", "character", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bqueen\b|\bking\b", "figurehead", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bfemale\b|\bmale\b", "genderless", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bprincess\b|\bprince\b", "androgynous heir", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bactress\b|\bactor\b", "performer", prompt, flags=re.IGNORECASE)
elif direction == "Trans_to_intersex":
# 转换为双性化特征
prompt = re.sub(r"\bshe\b", "they", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bhe\b", "they", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bher\b", "their", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bhis\b", "their", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bherself\b", "themself", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bhimself\b", "themself", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bwoman\b", "androgynous individual", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bman\b", "androgynous individual", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bgirl\b", "intersex character", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bboy\b", "intersex character", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bfemale\b", "intersex", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bmale\b", "intersex", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bqueen\b", "intersex ruler", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bking\b", "intersex ruler", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bprincess\b", "intersex heir", prompt, flags=re.IGNORECASE)
prompt = re.sub(r"\bprince\b", "intersex heir", prompt, flags=re.IGNORECASE)
return prompt
##############################################################################
# 5. 核心 GPT/DeepSeek 调用
##############################################################################
def generate_transformed_output(prompt, gender_option, top_cat, sub_cat, species_item, api_mode, api_key):
if not api_key:
return "Error: No API Key provided."
if api_mode == "GPT":
base_url = None
model_name = "gpt-4o"
else:
base_url = "https://api.deepseek.com"
model_name = "deepseek-chat"
client = OpenAI(api_key=api_key)
if base_url:
client.base_url = base_url
if gender_option == "Trans_to_Furry":
furry_path = f"{top_cat} > {sub_cat} > {species_item}" if (top_cat and sub_cat and species_item) else "unknown"
species_data = FURRY_DATA.get(top_cat, {}).get(sub_cat, [])
species_details = next((item["Details"] for item in species_data if item["Name"] == species_item), "unknown details")
gender_desc = ", ".join([g.lower() for g in gender_selection_furry]) if gender_selection_furry else "neutral"
extra_line = f"\nfurry {gender_desc} {furry_path} {species_details} anthro character\n"
else:
extra_line = ""
gender_specific_rule = ""
if gender_option == "Trans_to_Male":
gender_specific_rule = GENDER_RULES.get("male", "")
extra_line = f"\n1boy\n"
elif gender_option == "Trans_to_Female":
gender_specific_rule = GENDER_RULES.get("female", "")
extra_line = f"\n1girl\n"
elif gender_option == "Trans_to_Mannequin":
gender_specific_rule = GENDER_RULES.get("genderless", "")
extra_line = f"\nmannequin or statue or doll or robot or android\n"
elif gender_option == "Trans_to_Intersex":
gender_specific_rule = GENDER_RULES.get("intersex", "")
extra_line = f"\nhanve both penis_testicles and pussy\n"
system_prompt = f"""
You are a creative assistant that transforms the user's base prompt
生成将提示词中的主体转化为{extra_line}{gender_specific_rule}的提示词,注意性别,其服装和装饰细节,皮肤和第二性征的转变,并且 Follow references below:
Detailed Transform Rules (transform_rules.json): 简化并去除重复和冗余的提示词部分,删除和主体角色性别或种族不符合的,不融洽的提示词。
{RULES_TEXT_FULL}
Instructions:
- Ensure all gender-specific terms are replaced correctly based on the rules.
- Original prompt tags: {prompt}
- Convert them into NEW combined tags, removing or replacing conflicting ones.
- Only output two parts:
1) One line of final tags in parentheses, e.g. (male, short hair, dynamic pose, ...)
2) A blank line.
3) Then 2~5 sentences of imaginative scene description in English.
- No extra lines, no headings, no 'gender:' or 'base_prompt:'.
- No more than 990 tokens.
- End of instructions.
""".strip()
try:
resp = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Generate final tags and description now."}
],
)
return resp.choices[0].message.content.strip()
except Exception as e:
return f"{api_mode} generation failed. Error: {e}"
##############################################################################
# 6. 翻译函数
##############################################################################
def translate_text(content, lang, api_mode, api_key):
if not api_key:
return "Error: No API Key provided."
if not content.strip():
return ""
if api_mode == "GPT":
base_url = None
model_name = "gpt-4o"
else:
base_url = "https://api.deepseek.com"
model_name = "deepseek-chat"
client = OpenAI(api_key=api_key)
if base_url:
client.base_url = base_url
translate_system_prompt = f"""
You are a translator. Translate the following text to {lang},
keeping parentheses line, tags and blank line if present.
No extra headings.
""".strip()
try:
resp = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": translate_system_prompt},
{"role": "user", "content": content}
],
)
return resp.choices[0].message.content.strip()
except Exception as e:
return f"{api_mode} translation failed. Error: {e}"
##############################################################################
# 7. Gradio 界面
##############################################################################
def build_interface():
with gr.Blocks() as demo:
gr.Markdown("## Prompt Trans-Tool - 提示词物种性别转换器")
with gr.Row():
with gr.Column():
api_mode = gr.Radio(
label="Select API 选择API厂商 (GPT/DeepSeek)",
choices=["GPT", "DeepSeek"],
value="GPT"
)
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Input your GPT or DeepSeek Key"
)
gender_option = gr.Radio(
label="Trans-Option 选择转换目标",
choices=[
"Trans_to_Male",
"Trans_to_Female",
"Trans_to_Mannequin",
"Trans_to_Intersex",
"Trans_to_Furry"
],
value="Trans_to_Male"
)
top_cat_dd = gr.Dropdown(
label="Furry: Top Category",
choices=get_top_categories(FURRY_DATA),
value=None,
visible=False
)
sub_cat_dd = gr.Dropdown(
label="Furry: Sub Category",
choices=[],
value=None,
visible=False
)
species_dd = gr.Dropdown(
label="Furry: Species",
choices=[],
value=None,
visible=False
)
gender_selection_furry = gr.Radio(
label="Furry Gender Selection (选择Furry性别)",
choices=["Male", "Female"],
value="Male", # 默认公
visible=False # 默认隐藏,仅在 Furry 选项时显示
)
def show_furry_options(opt):
if opt == "Trans_to_Furry":
return (gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True))
else:
return (gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False))
gender_option.change(
fn=show_furry_options,
inputs=[gender_option],
outputs=[gender_selection_furry, top_cat_dd, sub_cat_dd, species_dd]
)
def on_top_cat_select(selected):
subs = get_sub_categories(FURRY_DATA, selected)
return gr.update(choices=subs, value=None)
top_cat_dd.change(
fn=on_top_cat_select,
inputs=[top_cat_dd],
outputs=[sub_cat_dd]
)
def on_sub_cat_select(top_c, sub_c):
species = get_species_list(FURRY_DATA, top_c, sub_c)
return gr.update(choices=species, value=None)
sub_cat_dd.change(
fn=on_sub_cat_select,
inputs=[top_cat_dd, sub_cat_dd],
outputs=[species_dd]
)
with gr.Column():
user_prompt = gr.Textbox(
label="Original Prompt 原始提示词 (e.g. 1girl, butterfly, solo, ...)",
lines=5
)
final_output = gr.Textbox(
label="Transformed Output 翻译结果 (tags + description)",
lines=10
)
with gr.Row():
translate_lang = gr.Dropdown(
label="Translate to Language 翻译语言",
choices=[
"English", "Chinese", "Japanese", "French", "German",
"Italian", "Spanish", "Russian", "Dutch", "Persian", "Arabic", "Thai"
],
value="English"
)
translated_text = gr.Textbox(
label="Translated Result",
lines=10
)
######################################################################
# 生成
######################################################################
def on_generate(prompt, gender, gender_selection_furry, tc, sc, spc, mode, key, lang):
# Step 1: 强制替换用户输入
direction = transform_map.get(gender, None)
if direction:
prompt = forced_replace(prompt, direction) # 替换必须在生成之前
# Debug 替换后的 Prompt
print(f"Debug Prompt After Replacement: {prompt}")
# Step 2: 如果是 Furry 类目,处理性别描述
if gender == "Trans_to_Furry":
furry_path = f"{tc} > {sc} > {spc}" if (tc and sc and spc) else "unknown"
species_details = FURRY_DATA.get(tc, {}).get(sc, {}).get(spc, {}).get("Details", "")
gender_description = ", ".join([g.lower() for g in gender_selection_furry]) if gender_selection_furry else "neutral"
prompt += f", Furry: {furry_path}, {gender_description}, {species_details}" # 添加 Furry 类目路径
# 添加性别描述(如果选择了性别)
if gender_selection_furry:
gender_description = ", ".join([g.lower() for g in gender_selection_furry]) # 转换为小写
prompt += f", {gender_description}" # 将性别描述附加到提示词
# Debug 添加性别后的 Prompt
print(f"Debug Prompt with Furry Gender: {prompt}")
# Step 3: 提交到生成器
merged_output = generate_transformed_output(prompt, gender, gender_selection_furry, tc, sc, spc, mode, key)
# Debug 生成器输出
print(f"Debug Merged Output: {merged_output}")
# Step 4: 翻译生成的结果
translated_output = translate_text(merged_output, lang, mode, key)
# Step 5: 返回结果
return merged_output, translated_output
user_prompt.submit(
fn=on_generate,
inputs=[user_prompt, gender_option, gender_selection_furry, top_cat_dd, sub_cat_dd, species_dd, api_mode, api_key, translate_lang],
outputs=[final_output, translated_text]
)
gen_btn = gr.Button("Generate")
gen_btn.click(
fn=on_generate,
inputs=[user_prompt, gender_option, gender_selection_furry, top_cat_dd, sub_cat_dd, species_dd, api_mode, api_key, translate_lang],
outputs=[final_output, translated_text]
)
return demo
if __name__ == "__main__":
demo = build_interface()
demo.launch() |