Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import gradio as gr | |
model = AutoModelForSeq2SeqLM.from_pretrained("PRAli22/flan-t5-base-imdb-text-classification") | |
tokenizer = AutoTokenizer.from_pretrained("PRAli22/flan-t5-base-imdb-text-classification") | |
def summarize(text): | |
inputs = tokenizer.encode_plus(text, padding='max_length', max_length=512, return_tensors='pt') | |
summarized_ids = model.generate(inputs['input_ids'], attention_mask=inputs['attention_mask'], | |
max_length=150, num_beams=4, early_stopping=True) | |
return " ".join([tokenizer.decode(token_ids, skip_special_tokens=True) | |
for token_ids in summarized_ids]) | |
css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}' | |
demo = gr.Interface( | |
fn=summarize, | |
inputs= | |
gr.Textbox(label="text", placeholder="Enter the text "), | |
outputs=gr.Textbox(label="summary"), | |
title="Text Summarizer", | |
description= "This is Text Summarizer System, it takes a text in English as inputs and returns it's summary", | |
css = css_code | |
) | |
demo.launch() |