Spaces:
Runtime error
Runtime error
from transformers import AutoConfig, AutoModelForTokenClassification, AutoTokenizer | |
import numpy as np | |
import torch | |
import gradio as gr | |
import requests | |
test_model = AutoModelForTokenClassification.from_pretrained("PRAli22/arabert_arabic_ner") | |
TOKENIZER = AutoTokenizer.from_pretrained("PRAli22/arabert_arabic_ner") | |
label_map = {'B-LOC': 0, 'O': 1, 'B-PERS': 2, 'I-PERS': 3, 'B-ORG': 4, 'I-LOC': 5, 'I-ORG': 6, 'B-MISC': 7, 'I-MISC': 8} | |
inv_label_map = {0: 'B-LOC', 1: 'O', 2: 'B-PERS', 3: 'I-PERS', 4: 'B-ORG', 5: 'I-LOC', 6: 'I-ORG', 7: 'B-MISC', 8: 'I-MISC'} | |
def predict_sent(sentences): | |
input_ids = TOKENIZER.encode(sentences, return_tensors='pt') | |
with torch.no_grad(): | |
test_model.to('cpu') | |
output = test_model(input_ids) | |
label_indices = np.argmax(output[0].to('cpu').numpy(), axis=2) | |
tokens = TOKENIZER.convert_ids_to_tokens(input_ids.to('cpu').numpy()[0]) | |
new_tokens, new_labels = [], [] | |
for token, label_idx in zip(tokens, label_indices[0]): | |
if token.startswith("##"): | |
new_tokens[-1] = new_tokens[-1] + token[2:] | |
else: | |
new_labels.append(inv_label_map[label_idx]) | |
new_tokens.append(token) | |
output_string = "\n".join(["{}\t{}".format(label, token) for token, label in zip(new_tokens, new_labels)]) | |
return output_string | |
css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}' | |
demo = gr.Interface( | |
fn=predict_sent, | |
inputs= | |
gr.Textbox(label="sentence", placeholder=" Enter the sentence "), | |
outputs=[gr.Textbox(label="entity name")], | |
title="Arabic Named Entity Recognition", | |
description= "This is Arabic Named Entity Recognition System, it takes an arabian sentence as input and returns every entity name within it", | |
css = css_code | |
) | |
demo.launch() | |