File size: 5,241 Bytes
5ea1b6f
5eb7f8a
 
5ea1b6f
5eb7f8a
ede25fc
2e0c5aa
5ea1b6f
2e121c3
2e0c5aa
 
ede25fc
5ea1b6f
 
 
ede25fc
2e0c5aa
5eb7f8a
 
ede25fc
6f3ba92
ede25fc
6902d7b
ede25fc
e2ad235
ede25fc
878eb5c
 
 
ede25fc
 
525ce44
3e4a0db
525ce44
5ea1b6f
 
5eb7f8a
 
 
 
2e0c5aa
 
ce1f1b7
 
 
 
 
 
 
 
 
 
 
2e0c5aa
fb3d3b9
2e0c5aa
ce1f1b7
d9403e1
ce1f1b7
 
475ed70
ce1f1b7
 
475ed70
ce1f1b7
 
 
 
 
 
5ea1b6f
ce1f1b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea1b6f
764e17a
c257e9e
764e17a
878eb5c
 
 
 
525ce44
878eb5c
 
 
525ce44
878eb5c
 
 
 
 
 
 
 
 
5ea1b6f
ce1f1b7
5ea1b6f
 
 
 
ce1f1b7
878eb5c
 
ce1f1b7
878eb5c
 
ce1f1b7
878eb5c
ce1f1b7
 
878eb5c
5ea1b6f
 
ede25fc
5ea1b6f
ede25fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
import pickle
from datasets import load_dataset
from plaid.containers.sample import Sample


import numpy as np
import pyrender
from trimesh import Trimesh
import matplotlib as mpl
import matplotlib.cm as cm

import os
# switch to "osmesa" or "egl" before loading pyrender
os.environ["PYOPENGL_PLATFORM"] = "egl"


# os.system("wget https://zenodo.org/records/10124594/files/Tensile2d.tar.gz")
# os.system("tar -xvf Tensile2d.tar.gz")

hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")

nb_samples = 500

field_names_train = ["sig11", "sig22", "sig12", "U1", "U2", "q"]

_HEADER_ = '''
<h2><b>Visualization demo of <a href='https://huggingface.co/datasets/PLAID-datasets/Tensile2d' target='_blank'><b>Tensile2d dataset</b></b></h2>
'''


def round_num(num)->str:
    return '%s' % float('%.3g' % num)

def sample_info(sample_id_str, fieldn):

    sample_ = hf_dataset[int(sample_id_str)]["sample"]
    plaid_sample = Sample.model_validate(pickle.loads(sample_))
    # plaid_sample = Sample.load_from_dir(f"Tensile2d/dataset/samples/sample_"+str(sample_id_str).zfill(9))

    nodes = plaid_sample.get_nodes()
    field = plaid_sample.get_field(fieldn)
    # if nodes.shape[1] == 2:
    #     nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1))
    #     nodes__[:,:-1] = nodes
    #     nodes = nodes__

    norm = (field - field.min()) / (field.max() - field.min())
    colormap_func = mpl.pyplot.get_cmap('viridis')
    rgb_colors = colormap_func(norm)[:, :3]
    
    nb_nodes = nodes.shape[0]
    
    triangles = plaid_sample.get_elements()['TRI_3']
    nb_tris = triangles.shape[0]

    assert field.shape[0] == nb_nodes
    
    with open("visu.obj", 'w') as f:
        for i in range(nb_nodes):
            f.write(f"v {nodes[i,0]} {nodes[i,1]} {0.} {rgb_colors[i,0]} {rgb_colors[i,1]} {rgb_colors[i,2]}\n")
       
        for i in range(nb_tris):
            f.write(f"f {triangles[i,0] + 1} {triangles[i,2] + 1} {triangles[i,1] + 1} \n")
            
    # # generate colormap
    # if np.linalg.norm(field) > 0:
    #     norm = mpl.colors.Normalize(vmin=np.min(field), vmax=np.max(field))
    #     cmap = cm.coolwarm
    #     m = cm.ScalarMappable(norm=norm, cmap=cmap)
    
    #     vertex_colors = m.to_rgba(field)[:,:3]
    # else:
    #     vertex_colors = 1+np.zeros((field.shape[0], 3))
    #     vertex_colors[:,0] = 0.2298057
    #     vertex_colors[:,1] = 0.01555616
    #     vertex_colors[:,2] = 0.15023281

    # # generate mesh
    # trimesh = Trimesh(vertices = nodes, faces = triangles)
    # trimesh.visual.vertex_colors = vertex_colors
    # mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)

    # # compose scene
    # scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
    # camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0)
    # light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)

    # scene.add(mesh, pose=  np.eye(4))
    # scene.add(light, pose=  np.eye(4))

    # scene.add(camera, pose=[[ 1,  0,  0,  0],
    #                         [ 0,  1,  0,  0],
    #                         [ 0,  0,  1,  3],
    #                         [ 0,  0,  0,  1]])

    # # render scene
    # r = pyrender.OffscreenRenderer(1024, 1024)
    # color, _ = r.render(scene)

    
    str__ = f"Training sample {sample_id_str}\n"
    str__ += str(plaid_sample)+"\n"
    
    if len(hf_dataset.description['in_scalars_names'])>0:        
        str__ += "\ninput scalars:\n"
        for sname in hf_dataset.description['in_scalars_names']:
            str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
    if len(hf_dataset.description['out_scalars_names'])>0:        
        str__ += "\noutput scalars:\n"
        for sname in hf_dataset.description['out_scalars_names']:
            str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
    str__ += f"\n\nMesh number of nodes: {nodes.shape[0]}\n"
    if len(hf_dataset.description['in_fields_names'])>0:        
        str__ += "\ninput fields:\n"
        for fname in hf_dataset.description['in_fields_names']:
            str__ += f"- {fname}\n"
    if len(hf_dataset.description['out_fields_names'])>0:        
        str__ += "\noutput fields:\n"
        for fname in hf_dataset.description['out_fields_names']:
            str__ += f"- {fname}\n"

    return str__, "./visu.obj"


if __name__ == "__main__":

    with gr.Blocks(fill_width=True) as demo:
        gr.Markdown(_HEADER_)
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                d1 = gr.Slider(0, nb_samples-1, value=0, label="Training sample id", info="Choose between 0 and "+str(nb_samples-1))
                output1 = gr.Text(label="Training sample info")
            with gr.Column(scale=2, min_width=300):
                d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")        
                # output2 = gr.Image(label="Training sample visualization")    
                output2 = gr.Model3D(label="Training sample visualization")
                
        d1.input(sample_info, [d1, d2], [output1, output2])
        d2.input(sample_info, [d1, d2], [output1, output2]) 

    demo.launch()