Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -50,34 +50,40 @@ def format_description(raw_description, do_format=True):
|
|
50 |
return raw_description
|
51 |
|
52 |
messages = [{
|
|
|
|
|
|
|
53 |
"role": "user",
|
54 |
-
"content": f"""Format this voice description
|
55 |
"a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]"
|
56 |
-
|
|
|
57 |
- gender: man/woman
|
58 |
- pitch: slightly low-pitched/moderate pitch/high-pitched
|
59 |
-
- speed: slowly/moderately/quickly
|
60 |
- environment: close-sounding and clear/distant-sounding and noisy
|
61 |
- delivery style: with monotone delivery/with animated delivery
|
62 |
-
|
|
|
|
|
|
|
63 |
}]
|
64 |
|
65 |
input_text = smol_tokenizer.apply_chat_template(messages, tokenize=False)
|
66 |
inputs = smol_tokenizer.encode(input_text, return_tensors="pt").to(device)
|
67 |
outputs = smol_model.generate(
|
68 |
inputs,
|
69 |
-
max_new_tokens=
|
70 |
-
temperature=0.
|
71 |
top_p=0.9,
|
72 |
do_sample=True
|
73 |
)
|
74 |
formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
|
76 |
-
# Extract the formatted description
|
77 |
-
|
78 |
-
return formatted.
|
79 |
-
|
80 |
-
return raw_description
|
81 |
|
82 |
def preprocess(text):
|
83 |
text = number_normalizer(text).strip()
|
|
|
50 |
return raw_description
|
51 |
|
52 |
messages = [{
|
53 |
+
"role": "system",
|
54 |
+
"content": "You are a helpful assistant that formats voice descriptions precisely according to the template provided."
|
55 |
+
}, {
|
56 |
"role": "user",
|
57 |
+
"content": f"""Format this voice description exactly as:
|
58 |
"a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]"
|
59 |
+
|
60 |
+
Required format:
|
61 |
- gender: man/woman
|
62 |
- pitch: slightly low-pitched/moderate pitch/high-pitched
|
63 |
+
- speed: slowly/moderately/quickly
|
64 |
- environment: close-sounding and clear/distant-sounding and noisy
|
65 |
- delivery style: with monotone delivery/with animated delivery
|
66 |
+
|
67 |
+
Input description: {raw_description}
|
68 |
+
|
69 |
+
Return only the formatted description, nothing else."""
|
70 |
}]
|
71 |
|
72 |
input_text = smol_tokenizer.apply_chat_template(messages, tokenize=False)
|
73 |
inputs = smol_tokenizer.encode(input_text, return_tensors="pt").to(device)
|
74 |
outputs = smol_model.generate(
|
75 |
inputs,
|
76 |
+
max_new_tokens=100,
|
77 |
+
temperature=0.2,
|
78 |
top_p=0.9,
|
79 |
do_sample=True
|
80 |
)
|
81 |
formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
82 |
|
83 |
+
# Extract just the formatted description
|
84 |
+
if "a woman" in formatted.lower() or "a man" in formatted.lower():
|
85 |
+
return formatted.strip()
|
86 |
+
return raw_description
|
|
|
87 |
|
88 |
def preprocess(text):
|
89 |
text = number_normalizer(text).strip()
|