PDG's picture
Update app.py
6586467
import os
import numpy as np
import gradio as gr
import torch
from torchvision import models, transforms
from PIL import Image
# -- install detectron2 from source ------------------------------------------------------------------------------
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
os.system('pip install pyyaml==5.1')
import detectron2
from detectron2.utils.logger import setup_logger
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
import cv2
setup_logger()
# -- load rcnn model ---------------------------------------------------------------------------------------------
cfg = get_cfg()
# load model config
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
# set model weights
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.DEVICE= 'cpu' # move to cpu
predictor = DefaultPredictor(cfg) # create model
# -- load design modernity model for classification --------------------------------------------------------------
DesignModernityModel = torch.load("DesignModernityModelBonus.pt")
DesignModernityModel.eval() # set state of the model to inference
# Set class labels
LABELS = ['2000-2003', '2004-2006', '2007-2009', '2010-2012', '2013-2015', '2016-2019']
n_labels = len(LABELS)
# define maéan and std dev for normalization
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
# define image transformation steps
carTransforms = transforms.Compose([transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD)])
# -- define a function for extraction of the detected car ---------------------------------------------------------
def cropImage(outputs, im, boxes, car_class_true):
# Get the masks
masks = list(np.array(outputs["instances"].pred_masks[car_class_true]))
max_idx = torch.tensor([(x[2] - x[0])*(x[3] - x[1]) for x in boxes]).argmax().item()
# Pick an item to mask
item_mask = masks[max_idx]
# Get the true bounding box of the mask
segmentation = np.where(item_mask == True) # return a list of different position in the bow, which are the actual detected object
x_min = int(np.min(segmentation[1])) # minimum x position
x_max = int(np.max(segmentation[1]))
y_min = int(np.min(segmentation[0]))
y_max = int(np.max(segmentation[0]))
# Create cropped image from the just portion of the image we want
cropped = Image.fromarray(im[y_min:y_max, x_min:x_max, :], mode = 'RGB')
# Create a PIL Image out of the mask
mask = Image.fromarray((item_mask * 255).astype('uint8')) ###### change 255
# Crop the mask to match the cropped image
cropped_mask = mask.crop((x_min, y_min, x_max, y_max))
# Load in a background image and choose a paste position
height = y_max-y_min
width = x_max-x_min
background = Image.new(mode='RGB', size=(width, height), color=(255, 255, 255, 0))
# Create a new foreground image as large as the composite and paste the cropped image on top
new_fg_image = Image.new('RGB', background.size)
new_fg_image.paste(cropped)
# Create a new alpha mask as large as the composite and paste the cropped mask
new_alpha_mask = Image.new('L', background.size, color=0)
new_alpha_mask.paste(cropped_mask)
#composite the foreground and background using the alpha mask
composite = Image.composite(new_fg_image, background, new_alpha_mask)
return composite
# -- define function for image segmentation and classification --------------------------------------------------------
def classifyCar(im):
# read image
#im = cv2.imread(im)
# perform segmentation
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1)
out = v.draw_instance_predictions(outputs["instances"])
# check if a car was detected in the image
car_class_true = outputs["instances"].pred_classes == 2
boxes = list(outputs["instances"].pred_boxes[car_class_true])
# if a car was detected, extract the car and perform modernity score classification
if len(boxes) != 0:
im2 = cropImage(outputs, im, boxes, car_class_true)
with torch.no_grad():
scores = torch.nn.functional.softmax(DesignModernityModel(carTransforms(im2).unsqueeze(0))[0])
label = {LABELS[i]: float(scores[i]) for i in range(n_labels)}
# if no car was detected, show original image and print "No car detected"
else:
im2 = Image.fromarray(np.uint8(im)).convert('RGB')
label = "No car detected"
return im2, label
# -- create interface for model ----------------------------------------------------------------------------------------
interface = gr.Interface(classifyCar, inputs='image', outputs=['image','label'], cache_examples=False, title='Modernity car classification')
interface.launch()