|
|
|
""" |
|
Created on Thu Jun 1 14:14:59 2023 |
|
|
|
@author: ME |
|
""" |
|
|
|
from datetime import datetime |
|
import pandas as pd |
|
import joblib |
|
|
|
|
|
json_path = r"C:/Users/ME/Desktop/Blessing_AI/Weather_Prediction/Artifacts/feature_dict.joblib" |
|
loaded_data = joblib.load(json_path) |
|
|
|
def preprocess_data(start_d,end_d,airport_name): |
|
y, m , d = start_d |
|
y2 , m2, d2 = end_d |
|
start_date = datetime(y,m,d) |
|
end_date = datetime(y2,m2,d2) |
|
|
|
date_range = pd.date_range(start=start_date, end=end_date, freq='D') |
|
df_pred = pd.DataFrame(columns=["ds","NAME","ELEVATION","month","day"]) |
|
airport_encoded = loaded_data["Airport_name"][airport_name] |
|
elevation = loaded_data["elevation"][airport_name] |
|
for date in date_range: |
|
day = date.day |
|
month = date.month |
|
df_pred = df_pred.append({'ds':date,"NAME":airport_encoded,"ELEVATION":elevation, 'month': month, 'day': day}, ignore_index=True) |
|
return df_pred |