Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from huggingface_hub import login
|
|
|
4 |
import os
|
5 |
|
6 |
# Authenticate with Hugging Face
|
7 |
-
HF_API_TOKEN = os.getenv("ttt")
|
|
|
|
|
8 |
login(HF_API_TOKEN)
|
9 |
|
10 |
-
# Load your model
|
11 |
model_name = "Ouiam123/Llama-2-7b-chat-finetune-tourism"
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Define the response generation function
|
16 |
def generate_response(prompt):
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
|
21 |
# Create a Gradio interface
|
@@ -23,8 +45,10 @@ interface = gr.Interface(
|
|
23 |
fn=generate_response,
|
24 |
inputs="text",
|
25 |
outputs="text",
|
26 |
-
title="Moroccan Tourism Chatbot"
|
|
|
27 |
)
|
28 |
|
29 |
# Launch the app
|
30 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from huggingface_hub import login
|
4 |
+
import torch
|
5 |
import os
|
6 |
|
7 |
# Authenticate with Hugging Face
|
8 |
+
HF_API_TOKEN = os.getenv("ttt") # Ensure 'ttt' is set in the environment
|
9 |
+
if HF_API_TOKEN is None:
|
10 |
+
raise ValueError("Hugging Face API token ('ttt') not set in environment variables.")
|
11 |
login(HF_API_TOKEN)
|
12 |
|
13 |
+
# Load your model with memory optimization
|
14 |
model_name = "Ouiam123/Llama-2-7b-chat-finetune-tourism"
|
15 |
+
|
16 |
+
# Check for GPU availability
|
17 |
+
use_gpu = torch.cuda.is_available()
|
18 |
+
|
19 |
+
try:
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_API_TOKEN)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_name,
|
23 |
+
device_map="auto", # Automatically map layers to devices (CPU/GPU)
|
24 |
+
offload_folder="./offload", # Offload parts of the model to disk if needed
|
25 |
+
load_in_8bit=use_gpu, # Enable 8-bit precision for GPU
|
26 |
+
use_auth_token=HF_API_TOKEN,
|
27 |
+
)
|
28 |
+
except Exception as e:
|
29 |
+
raise RuntimeError(f"Failed to load the model: {e}")
|
30 |
|
31 |
# Define the response generation function
|
32 |
def generate_response(prompt):
|
33 |
+
# Preprocess input to optimize memory
|
34 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
35 |
+
|
36 |
+
# Move inputs to GPU if available
|
37 |
+
if use_gpu:
|
38 |
+
inputs = {key: value.to("cuda") for key, value in inputs.items()}
|
39 |
+
|
40 |
+
outputs = model.generate(**inputs, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
|
41 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
|
43 |
# Create a Gradio interface
|
|
|
45 |
fn=generate_response,
|
46 |
inputs="text",
|
47 |
outputs="text",
|
48 |
+
title="Optimized Moroccan Tourism Chatbot",
|
49 |
+
description="Ask any questions about tourism in Morocco!",
|
50 |
)
|
51 |
|
52 |
# Launch the app
|
53 |
+
if __name__ == "__main__":
|
54 |
+
interface.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|