Spaces:
Runtime error
Runtime error
File size: 12,880 Bytes
d37f8bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
from dotenv import load_dotenv
from langchain_text_splitters import RecursiveCharacterTextSplitter
from transformers import AutoModel, AutoTokenizer
# from pinecone import Pinecone, ServerlessSpec
import pinecone
from pinecone import (
Pinecone,
ServerlessSpec,
CloudProvider,
AwsRegion,
VectorType
)
import os
import requests
import numpy as np
import gradio as gr
import glob
import pandas as pd
import numpy as np
# Important: Import pinecone-client properly
# Load environment variables from .env file
load_dotenv()
DATA_PATH = os.getenv("DATA_PATH")
PINECONE_API = os.getenv("PINECONE_API")
PINECONE_ENV = os.getenv("PINECONE_ENV")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
print("PINECONE_API", PINECONE_API)
# Groq API settings
GROQ_EMBED_URL = "https://api.groq.com/openai/v1/embeddings"
GROQ_CHAT_URL = "https://api.groq.com/openai/v1/chat/completions"
EMBEDDING_MODEL = "llama3-405b-8192-embed"
LLM_MODEL = "llama3-70b-8192"
# Configure headers for Groq API requests
GROQ_HEADERS = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
# # Init Pinecone
pc = Pinecone(api_key=PINECONE_API)
print(PINECONE_API)
# --------------- initialize pinecone -----------------------------
# pc.create_index_for_model(
# name="test-index",
# cloud="aws",
# region="us-east-1",
# embed={
# "model":"llama-text-embed-v2",
# "field_map":{"text": "page_content"}
# }
# )
# Connect to the index
index = pc.Index("ai-coach")
#index = pc.Index("ahsan-400pg-pdf-doc-test")
embedding_model = AutoModel.from_pretrained(
'jinaai/jina-embeddings-v2-base-en', trust_remote_code=True)
# user_query = "user query"
# Function to generate embeddings without tokenization
def get_embedding(data):
embeddings = embedding_model.encode(data).tolist()
return embeddings
# Since your application is designed to answer a wide range of student queries and suggest relevant material, you want to retrieve enough content to cover different facets of a topic without overwhelming the LLM with too much information.
#
# # Starting Point:
# - A common starting point is to set top_k between **5 and 10.**
# - **top_k=5:** This can work well if your curated content is highly relevant and precise, ensuring that the top 5 matches are very close to the query.
# - **top_k=10:** If you want the coach to consider a broader range of content—perhaps to provide diverse perspectives or cover a topic more comprehensively—increasing top_k to around 10 might be beneficial.
#
# # Experiment and Adjust:
# - The “best” value depends on factors such as the diversity of your content, how densely your data covers the topics, and the quality of the embedding matches. It’s a good idea to experiment with different top_k values and evaluate the quality and relevance of the responses in your specific
#
# # Query Pinecone
#
# Function to query Pinecone index using embeddings
def query_pinecone(embedding):
# Use keyword arguments to pass the embedding and other parameters
result = index.query(vector=embedding, top_k=20, include_metadata=True)
return result['matches']
# # Query Groq Inference
# Function to query Groq LLM
def query_groq(prompt: str) -> str:
response = requests.post(
GROQ_CHAT_URL,
headers=GROQ_HEADERS,
json={
"model": LLM_MODEL,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.5,
"max_tokens": 8192 # max from groq website
}
)
if response.status_code != 200:
raise Exception(f"Error querying Groq: {response.text}")
return response.json()["choices"][0]["message"]["content"]
# Tokenizer to count number of tokens
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en")
def count_tokens(text: str) -> int:
# Encode the text into tokens
tokens = tokenizer.encode(text)
return len(tokens)
# # Process User Query
# # Gradio GUI TEST
# system_message = f"""
# You are a knowledgeable and friendly coach. Your goal is to help students understand concepts in a detailed and easy-to-understand manner.
# Be patient, ask guiding questions, and provide step-by-step explanations where needed. Adapt your responses to the student's knowledge level
# and help them build confidence in their learning. Refer relevant material to the student and encourage them to explore further.
# Based on the context and the student's question, provide a thoughtful and detailed explanation. Encourage them to think about the topic and
# offer further guidance if needed.
# """
# def gradio_interface(prompt,history =[]):
# output = process_user_query(prompt,history)
# history.append((prompt,output))
# return history
# gr.Interface(fn=gradio_interface, inputs= ['text',"state"], outputs=["chatbot","state"]).launch(debug=True,share=True)
# ------------------------------------------- WORKING 1 -------------------------------------------
# # Function to be used by Gradio for handling the query
# def gradio_process(user_query):
# response = process_user_query(user_query, conversation_history)
# return response
# # Create Gradio interface
# interface = gr.Interface(fn=gradio_process, inputs="text", outputs="text", title="RAG-based Coaching System")
# # Launch Gradio app
# interface.launch()
# ------------------------------------------- WORKING 2 -------------------------------------------
# Initialize empty conversation history (list of tuples)
# conversation_history = []
# def process_user_query(user_query: str, conversation_history: list):
# print(f"User Query Tokens: {count_tokens(user_query)}")
# # Generate embedding and get relevant context
# embedding = get_embedding(user_query)
# relevant_chunks = query_pinecone(embedding)
# context = "\n".join(chunk['metadata']["text"] for chunk in relevant_chunks)
# print("CONTEXT:", context)
# # Format conversation history for the prompt
# history_str = "\n".join(
# f"User: {user}\nCoach: {response}"
# for user, response in conversation_history
# )
# # Create structured prompt
# prompt = f"""You are a knowledgeable and friendly coach. Follow these guidelines:
# 1. Provide clear, step-by-step explanations
# 2. Ask guiding questions to encourage critical thinking
# 3. Adapt to the student's knowledge level
# 4. Use examples from the provided context when relevant
# Context from learning materials:
# {context}
# Conversation history:
# {history_str}
# New student question:
# "{user_query}"
# Provide a helpful response:"""
# # Get LLM response
# groq_response = query_groq(prompt)
# print(f"Response Tokens: {count_tokens(groq_response)}")
# # Return updated history with new interaction
# return conversation_history + [(user_query, groq_response)]
# # Gradio Interface
# with gr.Blocks() as interface:
# gr.Markdown("# 🧑🏫 AI Coaching Assistant")
# gr.Markdown("Welcome! I'm here to help you learn. Type your question below.")
# # State management
# chat_history = gr.State(conversation_history)
# with gr.Row():
# chatbot = gr.Chatbot(height=500)
# with gr.Column(scale=0.5):
# context_display = gr.Textbox(label="Relevant Context", interactive=False)
# user_input = gr.Textbox(label="Your Question", placeholder="Type here...")
# with gr.Row():
# submit_btn = gr.Button("Submit", variant="primary")
# undo_btn = gr.Button("Undo Last")
# clear_btn = gr.Button("Clear History")
# def handle_submit(user_input, history):
# if not user_input.strip():
# return gr.update(), history, ""
# # Process query and update history
# new_history = process_user_query(user_input, history)
# # Get latest context for display
# latest_context = "\n".join([chunk['metadata']["text"] for chunk in query_pinecone(
# get_embedding(user_input)
# )][:3]) # Show top 3 context snippets
# return "", new_history, latest_context
# # Component interactions
# submit_btn.click(
# handle_submit,
# [user_input, chat_history],
# [user_input, chat_history, context_display]
# ).then(
# lambda x: x,
# [chat_history],
# [chatbot]
# )
# undo_btn.click(
# lambda history: history[:-1] if history else [],
# [chat_history],
# [chat_history]
# ).then(
# lambda x: x,
# [chat_history],
# [chatbot]
# )
# clear_btn.click(
# lambda: [],
# None,
# [chat_history]
# ).then(
# lambda: ([], ""),
# None,
# [chatbot, context_display]
# )
# interface.launch(share=True)
# Just change the launch command to:
#interface.launch(share=True, auth=("username", "password")) # Add basic auth
# self hosting
# # Run with:
# interface.launch(
# server_name="0.0.0.0",
# server_port=7860,
# show_error=True
# )
# ------------------------------------------- WORKING 3 Enter key submits user query -------------------------------------------
# Initialize empty conversation history (list of tuples)
conversation_history = []
def process_user_query(user_query: str, conversation_history: list):
print(f"User Query Tokens: {count_tokens(user_query)}")
# Generate embedding and get relevant context
embedding = get_embedding(user_query)
relevant_chunks = query_pinecone(embedding)
context = "\n".join(chunk['metadata']["text"] for chunk in relevant_chunks)
print("CONTEXT:", context)
# Format conversation history for the prompt
history_str = "\n".join(
f"User: {user}\nCoach: {response}"
for user, response in conversation_history
)
# Create structured prompt
prompt = f"""You are a knowledgeable and friendly coach. Follow these guidelines:
1. Provide clear, step-by-step explanations
2. Ask guiding questions to encourage critical thinking
3. Adapt to the student's knowledge level
4. Use examples from the provided context when relevant
Context from learning materials:
{context}
Conversation history:
{history_str}
New student question:
"{user_query}"
Provide a helpful response:"""
# Get LLM response
groq_response = query_groq(prompt)
print(f"Response Tokens: {count_tokens(groq_response)}")
# Return updated history with new interaction
return conversation_history + [(user_query, groq_response)]
# Gradio Interface
with gr.Blocks() as interface:
gr.Markdown("# 🧑🏫 AI Coaching Assistant")
gr.Markdown("Welcome! I'm here to help you learn. Type your question below.")
# State management
chat_history = gr.State(conversation_history)
with gr.Row():
chatbot = gr.Chatbot(height=500)
with gr.Column(scale=0.5):
context_display = gr.Textbox(label="Relevant Context", interactive=False)
user_input = gr.Textbox(label="Your Question", placeholder="Type here...")
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
undo_btn = gr.Button("Undo Last")
clear_btn = gr.Button("Clear History")
def handle_submit(user_input, history):
if not user_input.strip():
return gr.update(), history, ""
# Process query and update history
new_history = process_user_query(user_input, history)
# Get latest context for display
latest_context = "\n".join([chunk['metadata']["text"] for chunk in query_pinecone(
get_embedding(user_input)
)][:3]) # Show top 3 context snippets
return "", new_history, latest_context
# Component interactions
submit_btn.click(
handle_submit,
[user_input, chat_history],
[user_input, chat_history, context_display]
).then(
lambda x: x,
[chat_history],
[chatbot]
)
# Add submit on Enter key press
user_input.submit(
handle_submit,
[user_input, chat_history],
[user_input, chat_history, context_display]
).then(
lambda x: x,
[chat_history],
[chatbot]
)
undo_btn.click(
lambda history: history[:-1] if history else [],
[chat_history],
[chat_history]
).then(
lambda x: x,
[chat_history],
[chatbot]
)
clear_btn.click(
lambda: [],
None,
[chat_history]
).then(
lambda: ([], ""),
None,
[chatbot, context_display]
)
interface.launch(share=True)
|