Orawan commited on
Commit
c23cf96
·
1 Parent(s): dcb0c79

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Untitled15.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1LkYVMK8AOEpUsR_FhEmhaVir9hAQSBsg
8
+ """
9
+
10
+ import joblib
11
+ import pandas as pd
12
+ import streamlit as st
13
+ smoking_status = {'formerly smoked': 1,
14
+ 'never smoked ': 2,
15
+ 'smokes': 3,
16
+ 'Unknown': 4,
17
+ }
18
+
19
+ model = joblib.load('model.joblib')
20
+ unique_values = joblib.load('unique_values.joblib')
21
+ unique_gender = unique_values["gender"]
22
+ unique_ever_married = unique_values["ever_married"]
23
+ unique_work_type = unique_values["work_type"]
24
+ unique_Residence_type = unique_values["Residence_type"]
25
+ unique_smoking_status = unique_values["smoking_status"]
26
+
27
+
28
+ def main():
29
+ st.title("Adult Income Analysis")
30
+ with st.form("questionaire"):
31
+ age = st.slider("age", min_value=0, max_value=100)
32
+ gender = st.selectbox("gender", unique_gender)
33
+ hypertension = st.slider("hypertension", min_value=0, max_value=1)
34
+ heart_disease = st.slider("heart_disease", min_value=0, max_value=1)
35
+ ever_married = st.selectbox("ever_married", unique_ever_married)
36
+ work_type = st.selectbox("work_type", unique_work_type)
37
+ Residence_type = st.selectbox("Residence_type", unique_Residence_type)
38
+ avg_glucose_level = st.slider("avg_glucose_level", min_value=0, max_value=300)
39
+ bmi = st.slider("bmi", min_value=0, max_value=100)
40
+ smoking_status = st.selectbox("smoking_status", unique_smoking_status)
41
+
42
+ clicked = st.form_submit_button("Predict stroke")
43
+ if clicked:
44
+ result=model.predict(pd.DataFrame({"age": [age],
45
+ "gender": [gender],
46
+ "hypertension": [hypertension],
47
+ "heart_disease": [heart_disease],
48
+ "ever_married": [ever_married],
49
+ "work_type": [work_type],
50
+ "Residence_type": [Residence_type],
51
+ "avg_glucose_level": [avg_glucose_level],
52
+ "bmi": [bmi],
53
+ "smoking_status":[smoking_status]}))
54
+ result = '1' if result[0] == 1 else '0'
55
+ st.success('The predicted stroke is {}'.format(result))
56
+ if __name__=='__main__':
57
+ main()