File size: 3,580 Bytes
d9f713b
 
 
 
 
 
 
15c5870
d9f713b
 
 
 
 
 
 
 
 
 
 
 
 
fb5ed3a
d9f713b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16af792
fb5ed3a
d9f713b
 
 
 
 
fb5ed3a
d9f713b
0aa1075
 
6cb28c0
fb5ed3a
d9f713b
0aa1075
 
 
d9f713b
 
6cb28c0
 
 
 
 
 
 
15c5870
 
6fdcf12
15c5870
 
6fdcf12
6cb28c0
 
 
 
 
 
 
 
 
d9f713b
6fdcf12
 
6cb28c0
d9f713b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import csv
import os
from datetime import datetime
from typing import Optional, Union
import gradio as gr
from huggingface_hub import HfApi, Repository
from export import convert
from gradio_huggingfacehub_search import HuggingfaceHubSearch


DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("openvino", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_WRITE_TOKEN")
DATA_DIR = "exporters_data"

repo = None
if HF_TOKEN:
    repo = Repository(local_dir=DATA_DIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)


def export(token: str, model_id: str, task: str = "auto") -> str:
    if token == "" or model_id == "":
        return """
        ### Invalid input 🐞
        Please fill a token and model name.
        """
    try:
        api = HfApi(token=token)

        error, commit_info = convert(api=api, model_id=model_id, task=task, force=False)
        if error != "0":
            return error

        print("[commit_info]", commit_info)

        # save in a private dataset
        if repo is not None:
            repo.git_pull(rebase=True)
            with open(os.path.join(DATA_DIR, DATA_FILE), "a") as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=["model_id", "pr_url", "time"])
                writer.writerow(
                    {
                        "model_id": model_id,
                        "pr_url": commit_info.pr_url,
                        "time": str(datetime.now()),
                    }
                )
            commit_url = repo.push_to_hub()
            print("[dataset]", commit_url)

        return f"#### Success πŸ”₯ Yay! This model was successfully exported and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url})"
    except Exception as e:
        return f"#### Error: {e}"


TTILE_IMAGE = """
<div
    style="
        display: block;
        margin-left: auto;
        margin-right: auto;
        width: 50%;
    "
>
<img src="https://huggingface.co/spaces/echarlaix/openvino-export/resolve/main/header.png"/>
</div>
"""

TITLE = """
<div
    style="
        display: inline-flex;
        align-items: center;
        text-align: center;
        max-width: 1400px;
        gap: 0.8rem;
        font-size: 2.2rem;
    "
>
<h1 style="text-align:center; font-weight: 1200">
    Export your model to OpenVINO
</h1>
</div>
"""

DESCRIPTION = """
This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/intel/inference) to automatically export your model to the OpenVINO format.

To export your model you need:
- A read-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
- A Model ID from the Hub (for example: [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english))


That's it ! πŸ”₯

After the model conversion, we will open a PR against the source repo.
"""

interface = gr.Interface(
    fn=export,
    inputs=[
        gr.Textbox(
            max_lines=1,
            label="Hugging Face token",
        ),

        HuggingfaceHubSearch(
            label="Hub Model ID",
            placeholder="Search for model id on Huggingface",
            search_type="model",
        ),
    ],
    outputs=[
        gr.Markdown(label="output"),
        gr.Image(show_label=False),
    ],
    submit_btn=gr.Button("Export"),
    title=TITLE,
    description=DESCRIPTION,
)
with gr.Blocks() as demo:
    # gr.HTML(TTILE_IMAGE)
    # gr.HTML(TITLE)
    interface.render()

demo.launch()