Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,8 @@ from data.tokenizer import (
|
|
12 |
)
|
13 |
from edit_utils_en import parse_edit_en
|
14 |
from edit_utils_en import parse_tts_en
|
15 |
-
|
16 |
-
|
17 |
from inference_scale import inference_one_sample
|
18 |
import librosa
|
19 |
import soundfile as sf
|
@@ -59,18 +59,18 @@ if not os.path.exists(os.path.join(MODELS_PATH, "English.pth")):
|
|
59 |
else:
|
60 |
print("english model found")
|
61 |
|
62 |
-
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
def get_random_string():
|
76 |
return "".join(str(uuid.uuid4()).split("-"))
|
@@ -130,7 +130,7 @@ from whisperx import align as align_func
|
|
130 |
|
131 |
# Load models
|
132 |
text_tokenizer_en = TextTokenizer(backend="espeak")
|
133 |
-
|
134 |
|
135 |
ssrspeech_fn_en = f"{MODELS_PATH}/English.pth"
|
136 |
ckpt_en = torch.load(ssrspeech_fn_en)
|
@@ -140,13 +140,13 @@ config_en = model_en.args
|
|
140 |
phn2num_en = ckpt_en["phn2num"]
|
141 |
model_en.to(device)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
|
151 |
encodec_fn = f"{MODELS_PATH}/wmencodec.th"
|
152 |
|
@@ -158,13 +158,13 @@ ssrspeech_model_en = {
|
|
158 |
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
|
159 |
}
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
|
169 |
|
170 |
def get_transcribe_state(segments):
|
@@ -192,21 +192,21 @@ def transcribe_en(audio_path):
|
|
192 |
state, success_message
|
193 |
]
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
|
211 |
@spaces.GPU
|
212 |
def align_en(segments, audio_path):
|
@@ -219,15 +219,15 @@ def align_en(segments, audio_path):
|
|
219 |
return state, segments
|
220 |
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
|
230 |
-
|
231 |
|
232 |
|
233 |
def get_output_audio(audio_tensors, codec_audio_sr):
|
@@ -442,210 +442,210 @@ def run_tts_en(seed, sub_amount, aug_text, cfg_coef, cfg_stride, prompt_length,
|
|
442 |
return output_audio, success_message
|
443 |
|
444 |
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
|
457 |
-
|
458 |
|
459 |
-
|
460 |
|
461 |
-
#
|
462 |
-
|
463 |
-
|
464 |
|
465 |
-
#
|
466 |
-
|
467 |
-
|
468 |
|
469 |
-
|
470 |
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
|
476 |
-
|
477 |
-
|
478 |
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
|
483 |
-
|
484 |
-
|
485 |
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
# def combine_spans(spans, threshold=0.2):
|
499 |
-
# spans.sort(key=lambda x: x[0])
|
500 |
-
# combined_spans = []
|
501 |
-
# current_span = spans[0]
|
502 |
-
|
503 |
-
# for i in range(1, len(spans)):
|
504 |
-
# next_span = spans[i]
|
505 |
-
# if current_span[1] >= next_span[0] - threshold:
|
506 |
-
# current_span[1] = max(current_span[1], next_span[1])
|
507 |
-
# else:
|
508 |
-
# combined_spans.append(current_span)
|
509 |
-
# current_span = next_span
|
510 |
-
# combined_spans.append(current_span)
|
511 |
-
# return combined_spans
|
512 |
-
|
513 |
-
# morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
|
514 |
-
# for start, end in zip(starting_intervals, ending_intervals)] # in seconds
|
515 |
-
# morphed_span = combine_spans(morphed_span, threshold=0.2)
|
516 |
-
# print("morphed_spans: ", morphed_span)
|
517 |
-
# mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
|
518 |
-
# mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
|
519 |
-
|
520 |
-
# decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
521 |
-
|
522 |
-
# new_audio = inference_one_sample(
|
523 |
-
# ssrspeech_model_zh["model"],
|
524 |
-
# ssrspeech_model_zh["config"],
|
525 |
-
# ssrspeech_model_zh["phn2num"],
|
526 |
-
# ssrspeech_model_zh["text_tokenizer"],
|
527 |
-
# ssrspeech_model_zh["audio_tokenizer"],
|
528 |
-
# audio_path, orig_transcript, target_transcript, mask_interval,
|
529 |
-
# cfg_coef, cfg_stride, aug_text, False, True, False,
|
530 |
-
# device, decode_config
|
531 |
-
# )
|
532 |
-
# audio_tensors = []
|
533 |
-
# # save segments for comparison
|
534 |
-
# new_audio = new_audio[0].cpu()
|
535 |
-
# torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
536 |
-
# audio_tensors.append(new_audio)
|
537 |
-
# output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
538 |
-
|
539 |
-
# success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
|
540 |
-
# return output_audio, success_message
|
541 |
-
|
542 |
-
|
543 |
-
# @spaces.GPU
|
544 |
-
# def run_tts_zh(seed, sub_amount, aug_text, cfg_coef, cfg_stride, prompt_length,
|
545 |
-
# audio_path, original_transcript, transcript):
|
546 |
-
|
547 |
-
# codec_audio_sr = 16000
|
548 |
-
# codec_sr = 50
|
549 |
-
# top_k = 0
|
550 |
-
# top_p = 0.8
|
551 |
-
# temperature = 1
|
552 |
-
# kvcache = 1
|
553 |
-
# stop_repetition = 2
|
554 |
-
|
555 |
-
# aug_text = True if aug_text == 1 else False
|
556 |
-
|
557 |
-
# seed_everything(seed)
|
558 |
-
|
559 |
-
# # resample audio
|
560 |
-
# audio, _ = librosa.load(audio_path, sr=16000)
|
561 |
-
# sf.write(audio_path, audio, 16000)
|
562 |
-
|
563 |
-
# # text normalization
|
564 |
-
# target_transcript = transcript.replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
565 |
-
# orig_transcript = original_transcript.replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
566 |
-
|
567 |
-
# [orig_transcript, segments, _, _] = transcribe_zh(audio_path)
|
568 |
-
|
569 |
-
# converter = opencc.OpenCC('t2s')
|
570 |
-
# orig_transcript = converter.convert(orig_transcript)
|
571 |
-
# transcribe_state,_ = align_zh(traditional_to_simplified(segments), audio_path)
|
572 |
-
# transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
573 |
-
|
574 |
-
# print(orig_transcript)
|
575 |
-
# print(target_transcript)
|
576 |
-
|
577 |
-
# info = torchaudio.info(audio_path)
|
578 |
-
# duration = info.num_frames / info.sample_rate
|
579 |
-
# cut_length = duration
|
580 |
-
# # Cut long audio for tts
|
581 |
-
# if duration > prompt_length:
|
582 |
-
# seg_num = len(transcribe_state['segments'])
|
583 |
-
# for i in range(seg_num):
|
584 |
-
# words = transcribe_state['segments'][i]['words']
|
585 |
-
# for item in words:
|
586 |
-
# if item['end'] >= prompt_length:
|
587 |
-
# cut_length = min(item['end'], cut_length)
|
588 |
-
|
589 |
-
# audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
|
590 |
-
# sf.write(audio_path, audio, 16000)
|
591 |
-
# [orig_transcript, segments, _, _] = transcribe_zh(audio_path)
|
592 |
-
|
593 |
-
|
594 |
-
# converter = opencc.OpenCC('t2s')
|
595 |
-
# orig_transcript = converter.convert(orig_transcript)
|
596 |
-
# transcribe_state,_ = align_zh(traditional_to_simplified(segments), audio_path)
|
597 |
-
# transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
598 |
-
|
599 |
-
# print(orig_transcript)
|
600 |
-
# target_transcript_copy = target_transcript # for tts cut out
|
601 |
-
# target_transcript_copy = target_transcript_copy[0]
|
602 |
-
# target_transcript = orig_transcript + target_transcript
|
603 |
-
# print(target_transcript)
|
604 |
-
|
605 |
-
|
606 |
-
# info = torchaudio.info(audio_path)
|
607 |
-
# audio_dur = info.num_frames / info.sample_rate
|
608 |
-
|
609 |
-
# morphed_span = [(audio_dur, audio_dur)] # in seconds
|
610 |
-
# mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
|
611 |
-
# mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
|
612 |
-
# print("mask_interval: ", mask_interval)
|
613 |
-
|
614 |
-
# decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
615 |
-
|
616 |
-
# new_audio = inference_one_sample(
|
617 |
-
# ssrspeech_model_zh["model"],
|
618 |
-
# ssrspeech_model_zh["config"],
|
619 |
-
# ssrspeech_model_zh["phn2num"],
|
620 |
-
# ssrspeech_model_zh["text_tokenizer"],
|
621 |
-
# ssrspeech_model_zh["audio_tokenizer"],
|
622 |
-
# audio_path, orig_transcript, target_transcript, mask_interval,
|
623 |
-
# cfg_coef, cfg_stride, aug_text, False, True, True,
|
624 |
-
# device, decode_config
|
625 |
-
# )
|
626 |
-
# audio_tensors = []
|
627 |
-
# # save segments for comparison
|
628 |
-
# new_audio = new_audio[0].cpu()
|
629 |
-
# torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
630 |
-
|
631 |
-
# [new_transcript, new_segments, _,_] = transcribe_zh(audio_path)
|
632 |
-
|
633 |
-
# transcribe_state,_ = align_zh(traditional_to_simplified(new_segments), audio_path)
|
634 |
-
# transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
635 |
-
# tmp1 = transcribe_state['segments'][0]['words'][0]['word']
|
636 |
-
# tmp2 = target_transcript_copy
|
637 |
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
|
650 |
|
651 |
if __name__ == "__main__":
|
@@ -815,131 +815,131 @@ if __name__ == "__main__":
|
|
815 |
outputs=[output_audio, success_output]
|
816 |
)
|
817 |
|
818 |
-
|
819 |
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
|
881 |
-
|
882 |
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
|
944 |
# Launch the Gradio demo
|
945 |
demo.launch()
|
|
|
12 |
)
|
13 |
from edit_utils_en import parse_edit_en
|
14 |
from edit_utils_en import parse_tts_en
|
15 |
+
from edit_utils_zh import parse_edit_zh
|
16 |
+
from edit_utils_zh import parse_tts_zh
|
17 |
from inference_scale import inference_one_sample
|
18 |
import librosa
|
19 |
import soundfile as sf
|
|
|
59 |
else:
|
60 |
print("english model found")
|
61 |
|
62 |
+
if not os.path.exists(os.path.join(MODELS_PATH, "Mandarin.pth")):
|
63 |
+
# download mandarin model
|
64 |
+
url = "https://huggingface.co/westbrook/SSR-Speech-Mandarin/resolve/main/Mandarin.pth"
|
65 |
+
filename = os.path.join(MODELS_PATH, "Mandarin.pth")
|
66 |
+
response = requests.get(url, stream=True)
|
67 |
+
response.raise_for_status()
|
68 |
+
with open(filename, "wb") as file:
|
69 |
+
for chunk in response.iter_content(chunk_size=8192):
|
70 |
+
file.write(chunk)
|
71 |
+
print(f"File downloaded to: {filename}")
|
72 |
+
else:
|
73 |
+
print("mandarin model found")
|
74 |
|
75 |
def get_random_string():
|
76 |
return "".join(str(uuid.uuid4()).split("-"))
|
|
|
130 |
|
131 |
# Load models
|
132 |
text_tokenizer_en = TextTokenizer(backend="espeak")
|
133 |
+
text_tokenizer_zh = TextTokenizer(backend="espeak", language='cmn-latn-pinyin')
|
134 |
|
135 |
ssrspeech_fn_en = f"{MODELS_PATH}/English.pth"
|
136 |
ckpt_en = torch.load(ssrspeech_fn_en)
|
|
|
140 |
phn2num_en = ckpt_en["phn2num"]
|
141 |
model_en.to(device)
|
142 |
|
143 |
+
ssrspeech_fn_zh = f"{MODELS_PATH}/Mandarin.pth"
|
144 |
+
ckpt_zh = torch.load(ssrspeech_fn_zh)
|
145 |
+
model_zh = ssr.SSR_Speech(ckpt_zh["config"])
|
146 |
+
model_zh.load_state_dict(ckpt_zh["model"])
|
147 |
+
config_zh = model_zh.args
|
148 |
+
phn2num_zh = ckpt_zh["phn2num"]
|
149 |
+
model_zh.to(device)
|
150 |
|
151 |
encodec_fn = f"{MODELS_PATH}/wmencodec.th"
|
152 |
|
|
|
158 |
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
|
159 |
}
|
160 |
|
161 |
+
ssrspeech_model_zh = {
|
162 |
+
"config": config_zh,
|
163 |
+
"phn2num": phn2num_zh,
|
164 |
+
"model": model_zh,
|
165 |
+
"text_tokenizer": text_tokenizer_zh,
|
166 |
+
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
|
167 |
+
}
|
168 |
|
169 |
|
170 |
def get_transcribe_state(segments):
|
|
|
192 |
state, success_message
|
193 |
]
|
194 |
|
195 |
+
@spaces.GPU
|
196 |
+
def transcribe_zh(audio_path):
|
197 |
+
language = "zh"
|
198 |
+
transcribe_model_name = "medium"
|
199 |
+
transcribe_model = load_model(transcribe_model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language)
|
200 |
+
segments = transcribe_model.transcribe(audio_path, batch_size=8)["segments"]
|
201 |
+
_, segments = align_zh(segments, audio_path)
|
202 |
+
state = get_transcribe_state(segments)
|
203 |
+
success_message = "<span style='color:green;'>Success: Transcribe completed successfully!</span>"
|
204 |
+
converter = opencc.OpenCC('t2s')
|
205 |
+
state["transcript"] = converter.convert(state["transcript"])
|
206 |
+
return [
|
207 |
+
state["transcript"], state['segments'],
|
208 |
+
state, success_message
|
209 |
+
]
|
210 |
|
211 |
@spaces.GPU
|
212 |
def align_en(segments, audio_path):
|
|
|
219 |
return state, segments
|
220 |
|
221 |
|
222 |
+
@spaces.GPU
|
223 |
+
def align_zh(segments, audio_path):
|
224 |
+
language = "zh"
|
225 |
+
align_model, metadata = load_align_model(language_code=language, device=device)
|
226 |
+
audio = load_audio(audio_path)
|
227 |
+
segments = align_func(segments, align_model, metadata, audio, device, return_char_alignments=False)["segments"]
|
228 |
+
state = get_transcribe_state(segments)
|
229 |
|
230 |
+
return state, segments
|
231 |
|
232 |
|
233 |
def get_output_audio(audio_tensors, codec_audio_sr):
|
|
|
442 |
return output_audio, success_message
|
443 |
|
444 |
|
445 |
+
@spaces.GPU
|
446 |
+
def run_edit_zh(seed, sub_amount, aug_text, cfg_coef, cfg_stride, prompt_length,
|
447 |
+
audio_path, original_transcript, transcript):
|
448 |
|
449 |
+
codec_audio_sr = 16000
|
450 |
+
codec_sr = 50
|
451 |
+
top_k = 0
|
452 |
+
top_p = 0.8
|
453 |
+
temperature = 1
|
454 |
+
kvcache = 1
|
455 |
+
stop_repetition = 2
|
456 |
|
457 |
+
aug_text = True if aug_text == 1 else False
|
458 |
|
459 |
+
seed_everything(seed)
|
460 |
|
461 |
+
# resample audio
|
462 |
+
audio, _ = librosa.load(audio_path, sr=16000)
|
463 |
+
sf.write(audio_path, audio, 16000)
|
464 |
|
465 |
+
# text normalization
|
466 |
+
target_transcript = transcript.replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
467 |
+
orig_transcript = original_transcript.replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
468 |
|
469 |
+
[orig_transcript, segments, _, _] = transcribe_zh(audio_path)
|
470 |
|
471 |
+
converter = opencc.OpenCC('t2s')
|
472 |
+
orig_transcript = converter.convert(orig_transcript)
|
473 |
+
transcribe_state,_ = align_zh(traditional_to_simplified(segments), audio_path)
|
474 |
+
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
475 |
|
476 |
+
print(orig_transcript)
|
477 |
+
print(target_transcript)
|
478 |
|
479 |
+
operations, orig_spans = parse_edit_zh(orig_transcript, target_transcript)
|
480 |
+
print(operations)
|
481 |
+
print("orig_spans: ", orig_spans)
|
482 |
|
483 |
+
if len(orig_spans) > 3:
|
484 |
+
raise gr.Error("Current model only supports maximum 3 editings")
|
485 |
|
486 |
+
starting_intervals = []
|
487 |
+
ending_intervals = []
|
488 |
+
for orig_span in orig_spans:
|
489 |
+
start, end = get_mask_interval(transcribe_state, orig_span)
|
490 |
+
starting_intervals.append(start)
|
491 |
+
ending_intervals.append(end)
|
492 |
+
|
493 |
+
print("intervals: ", starting_intervals, ending_intervals)
|
494 |
+
|
495 |
+
info = torchaudio.info(audio_path)
|
496 |
+
audio_dur = info.num_frames / info.sample_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
|
498 |
+
def combine_spans(spans, threshold=0.2):
|
499 |
+
spans.sort(key=lambda x: x[0])
|
500 |
+
combined_spans = []
|
501 |
+
current_span = spans[0]
|
502 |
+
|
503 |
+
for i in range(1, len(spans)):
|
504 |
+
next_span = spans[i]
|
505 |
+
if current_span[1] >= next_span[0] - threshold:
|
506 |
+
current_span[1] = max(current_span[1], next_span[1])
|
507 |
+
else:
|
508 |
+
combined_spans.append(current_span)
|
509 |
+
current_span = next_span
|
510 |
+
combined_spans.append(current_span)
|
511 |
+
return combined_spans
|
512 |
+
|
513 |
+
morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)]
|
514 |
+
for start, end in zip(starting_intervals, ending_intervals)] # in seconds
|
515 |
+
morphed_span = combine_spans(morphed_span, threshold=0.2)
|
516 |
+
print("morphed_spans: ", morphed_span)
|
517 |
+
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
|
518 |
+
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
|
519 |
+
|
520 |
+
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
521 |
+
|
522 |
+
new_audio = inference_one_sample(
|
523 |
+
ssrspeech_model_zh["model"],
|
524 |
+
ssrspeech_model_zh["config"],
|
525 |
+
ssrspeech_model_zh["phn2num"],
|
526 |
+
ssrspeech_model_zh["text_tokenizer"],
|
527 |
+
ssrspeech_model_zh["audio_tokenizer"],
|
528 |
+
audio_path, orig_transcript, target_transcript, mask_interval,
|
529 |
+
cfg_coef, cfg_stride, aug_text, False, True, False,
|
530 |
+
device, decode_config
|
531 |
+
)
|
532 |
+
audio_tensors = []
|
533 |
+
# save segments for comparison
|
534 |
+
new_audio = new_audio[0].cpu()
|
535 |
+
torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
536 |
+
audio_tensors.append(new_audio)
|
537 |
+
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
538 |
+
|
539 |
+
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
|
540 |
+
return output_audio, success_message
|
541 |
+
|
542 |
+
|
543 |
+
@spaces.GPU
|
544 |
+
def run_tts_zh(seed, sub_amount, aug_text, cfg_coef, cfg_stride, prompt_length,
|
545 |
+
audio_path, original_transcript, transcript):
|
546 |
+
|
547 |
+
codec_audio_sr = 16000
|
548 |
+
codec_sr = 50
|
549 |
+
top_k = 0
|
550 |
+
top_p = 0.8
|
551 |
+
temperature = 1
|
552 |
+
kvcache = 1
|
553 |
+
stop_repetition = 2
|
554 |
+
|
555 |
+
aug_text = True if aug_text == 1 else False
|
556 |
+
|
557 |
+
seed_everything(seed)
|
558 |
+
|
559 |
+
# resample audio
|
560 |
+
audio, _ = librosa.load(audio_path, sr=16000)
|
561 |
+
sf.write(audio_path, audio, 16000)
|
562 |
+
|
563 |
+
# text normalization
|
564 |
+
target_transcript = transcript.replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
565 |
+
orig_transcript = original_transcript.replace(" ", " ").replace(" ", " ").replace("\n", " ")
|
566 |
+
|
567 |
+
[orig_transcript, segments, _, _] = transcribe_zh(audio_path)
|
568 |
+
|
569 |
+
converter = opencc.OpenCC('t2s')
|
570 |
+
orig_transcript = converter.convert(orig_transcript)
|
571 |
+
transcribe_state,_ = align_zh(traditional_to_simplified(segments), audio_path)
|
572 |
+
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
573 |
+
|
574 |
+
print(orig_transcript)
|
575 |
+
print(target_transcript)
|
576 |
+
|
577 |
+
info = torchaudio.info(audio_path)
|
578 |
+
duration = info.num_frames / info.sample_rate
|
579 |
+
cut_length = duration
|
580 |
+
# Cut long audio for tts
|
581 |
+
if duration > prompt_length:
|
582 |
+
seg_num = len(transcribe_state['segments'])
|
583 |
+
for i in range(seg_num):
|
584 |
+
words = transcribe_state['segments'][i]['words']
|
585 |
+
for item in words:
|
586 |
+
if item['end'] >= prompt_length:
|
587 |
+
cut_length = min(item['end'], cut_length)
|
588 |
+
|
589 |
+
audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length)
|
590 |
+
sf.write(audio_path, audio, 16000)
|
591 |
+
[orig_transcript, segments, _, _] = transcribe_zh(audio_path)
|
592 |
+
|
593 |
+
|
594 |
+
converter = opencc.OpenCC('t2s')
|
595 |
+
orig_transcript = converter.convert(orig_transcript)
|
596 |
+
transcribe_state,_ = align_zh(traditional_to_simplified(segments), audio_path)
|
597 |
+
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
598 |
+
|
599 |
+
print(orig_transcript)
|
600 |
+
target_transcript_copy = target_transcript # for tts cut out
|
601 |
+
target_transcript_copy = target_transcript_copy[0]
|
602 |
+
target_transcript = orig_transcript + target_transcript
|
603 |
+
print(target_transcript)
|
604 |
+
|
605 |
+
|
606 |
+
info = torchaudio.info(audio_path)
|
607 |
+
audio_dur = info.num_frames / info.sample_rate
|
608 |
+
|
609 |
+
morphed_span = [(audio_dur, audio_dur)] # in seconds
|
610 |
+
mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span]
|
611 |
+
mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now
|
612 |
+
print("mask_interval: ", mask_interval)
|
613 |
+
|
614 |
+
decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr}
|
615 |
+
|
616 |
+
new_audio = inference_one_sample(
|
617 |
+
ssrspeech_model_zh["model"],
|
618 |
+
ssrspeech_model_zh["config"],
|
619 |
+
ssrspeech_model_zh["phn2num"],
|
620 |
+
ssrspeech_model_zh["text_tokenizer"],
|
621 |
+
ssrspeech_model_zh["audio_tokenizer"],
|
622 |
+
audio_path, orig_transcript, target_transcript, mask_interval,
|
623 |
+
cfg_coef, cfg_stride, aug_text, False, True, True,
|
624 |
+
device, decode_config
|
625 |
+
)
|
626 |
+
audio_tensors = []
|
627 |
+
# save segments for comparison
|
628 |
+
new_audio = new_audio[0].cpu()
|
629 |
+
torchaudio.save(audio_path, new_audio, codec_audio_sr)
|
630 |
+
|
631 |
+
[new_transcript, new_segments, _,_] = transcribe_zh(audio_path)
|
632 |
+
|
633 |
+
transcribe_state,_ = align_zh(traditional_to_simplified(new_segments), audio_path)
|
634 |
+
transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments'])
|
635 |
+
tmp1 = transcribe_state['segments'][0]['words'][0]['word']
|
636 |
+
tmp2 = target_transcript_copy
|
637 |
+
|
638 |
+
if tmp1 == tmp2:
|
639 |
+
offset = transcribe_state['segments'][0]['words'][0]['start']
|
640 |
+
else:
|
641 |
+
offset = transcribe_state['segments'][0]['words'][1]['start']
|
642 |
+
|
643 |
+
new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr))
|
644 |
+
audio_tensors.append(new_audio)
|
645 |
+
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
646 |
+
|
647 |
+
success_message = "<span style='color:green;'>Success: Inference successfully!</span>"
|
648 |
+
return output_audio, success_message
|
649 |
|
650 |
|
651 |
if __name__ == "__main__":
|
|
|
815 |
outputs=[output_audio, success_output]
|
816 |
)
|
817 |
|
818 |
+
with gr.Tab("Mandarin Speech Editing"):
|
819 |
|
820 |
+
with gr.Row():
|
821 |
+
with gr.Column(scale=2):
|
822 |
+
input_audio = gr.Audio(value=f"{DEMO_PATH}/aishell3_test.wav", label="Input Audio", type="filepath", interactive=True)
|
823 |
+
with gr.Group():
|
824 |
+
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="价格已基本都在三万到六万之间",
|
825 |
+
info="Use whisperx model to get the transcript.")
|
826 |
+
transcribe_btn = gr.Button(value="Transcribe")
|
827 |
+
|
828 |
+
with gr.Column(scale=3):
|
829 |
+
with gr.Group():
|
830 |
+
transcript = gr.Textbox(label="Text", lines=7, value="价格已基本都在一万到两万之间", interactive=True)
|
831 |
+
run_btn = gr.Button(value="Run")
|
832 |
+
|
833 |
+
with gr.Column(scale=2):
|
834 |
+
output_audio = gr.Audio(label="Output Audio")
|
835 |
|
836 |
+
with gr.Row():
|
837 |
+
with gr.Accordion("Advanced Settings", open=False):
|
838 |
+
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
|
839 |
+
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
|
840 |
+
info="set to 1 to use classifer-free guidance, change if you don't like the results")
|
841 |
+
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
|
842 |
+
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
|
843 |
+
cfg_stride = gr.Number(label="cfg_stride", value=1,
|
844 |
+
info="cfg stride, 1 is a good value for Mandarin, change if you don't like the results")
|
845 |
+
prompt_length = gr.Number(label="prompt_length", value=3,
|
846 |
+
info="used for tts prompt, will automatically cut the prompt audio to this length")
|
847 |
+
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
|
848 |
+
|
849 |
+
success_output = gr.HTML()
|
850 |
+
|
851 |
+
semgents = gr.State() # not used
|
852 |
+
state = gr.State() # not used
|
853 |
+
audio_state = gr.State(value=f"{DEMO_PATH}/aishell3_test.wav")
|
854 |
+
input_audio.change(
|
855 |
+
lambda audio: audio,
|
856 |
+
inputs=[input_audio],
|
857 |
+
outputs=[audio_state]
|
858 |
+
)
|
859 |
|
860 |
+
transcribe_btn.click(fn=transcribe_zh,
|
861 |
+
inputs=[audio_state],
|
862 |
+
outputs=[original_transcript, semgents, state, success_output])
|
863 |
|
864 |
+
run_btn.click(fn=run_edit_zh,
|
865 |
+
inputs=[
|
866 |
+
seed, sub_amount,
|
867 |
+
aug_text, cfg_coef, cfg_stride, prompt_length,
|
868 |
+
audio_state, original_transcript, transcript,
|
869 |
+
],
|
870 |
+
outputs=[output_audio, success_output])
|
871 |
+
|
872 |
+
transcript.submit(fn=run_edit_zh,
|
873 |
+
inputs=[
|
874 |
+
seed, sub_amount,
|
875 |
+
aug_text, cfg_coef, cfg_stride, prompt_length,
|
876 |
+
audio_state, original_transcript, transcript,
|
877 |
+
],
|
878 |
+
outputs=[output_audio, success_output]
|
879 |
+
)
|
880 |
|
881 |
+
with gr.Tab("Mandarin TTS"):
|
882 |
|
883 |
+
with gr.Row():
|
884 |
+
with gr.Column(scale=2):
|
885 |
+
input_audio = gr.Audio(value=f"{DEMO_PATH}/aishell3_test.wav", label="Input Audio", type="filepath", interactive=True)
|
886 |
+
with gr.Group():
|
887 |
+
original_transcript = gr.Textbox(label="Original transcript", lines=5, value="价格已基本都在三万到六万之间",
|
888 |
+
info="Use whisperx model to get the transcript.")
|
889 |
+
transcribe_btn = gr.Button(value="Transcribe")
|
890 |
+
|
891 |
+
with gr.Column(scale=3):
|
892 |
+
with gr.Group():
|
893 |
+
transcript = gr.Textbox(label="Text", lines=7, value="我简直不敢相信同一个模型也可以进行文本到语音的生成", interactive=True)
|
894 |
+
run_btn = gr.Button(value="Run")
|
895 |
+
|
896 |
+
with gr.Column(scale=2):
|
897 |
+
output_audio = gr.Audio(label="Output Audio")
|
898 |
|
899 |
+
with gr.Row():
|
900 |
+
with gr.Accordion("Advanced Settings", open=False):
|
901 |
+
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
|
902 |
+
aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1,
|
903 |
+
info="set to 1 to use classifer-free guidance, change if you don't like the results")
|
904 |
+
cfg_coef = gr.Number(label="cfg_coef", value=1.5,
|
905 |
+
info="cfg guidance scale, 1.5 is a good value, change if you don't like the results")
|
906 |
+
cfg_stride = gr.Number(label="cfg_stride", value=1,
|
907 |
+
info="cfg stride, 1 is a good value for Mandarin, change if you don't like the results")
|
908 |
+
prompt_length = gr.Number(label="prompt_length", value=3,
|
909 |
+
info="used for tts prompt, will automatically cut the prompt audio to this length")
|
910 |
+
sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results")
|
911 |
+
|
912 |
+
success_output = gr.HTML()
|
913 |
+
|
914 |
+
semgents = gr.State() # not used
|
915 |
+
state = gr.State() # not used
|
916 |
+
audio_state = gr.State(value=f"{DEMO_PATH}/aishell3_test.wav")
|
917 |
+
input_audio.change(
|
918 |
+
lambda audio: audio,
|
919 |
+
inputs=[input_audio],
|
920 |
+
outputs=[audio_state]
|
921 |
+
)
|
922 |
|
923 |
+
transcribe_btn.click(fn=transcribe_zh,
|
924 |
+
inputs=[audio_state],
|
925 |
+
outputs=[original_transcript, semgents, state, success_output])
|
926 |
|
927 |
+
run_btn.click(fn=run_tts_zh,
|
928 |
+
inputs=[
|
929 |
+
seed, sub_amount,
|
930 |
+
aug_text, cfg_coef, cfg_stride, prompt_length,
|
931 |
+
audio_state, original_transcript, transcript,
|
932 |
+
],
|
933 |
+
outputs=[output_audio, success_output])
|
934 |
+
|
935 |
+
transcript.submit(fn=run_tts_zh,
|
936 |
+
inputs=[
|
937 |
+
seed, sub_amount,
|
938 |
+
aug_text, cfg_coef, cfg_stride, prompt_length,
|
939 |
+
audio_state, original_transcript, transcript,
|
940 |
+
],
|
941 |
+
outputs=[output_audio, success_output]
|
942 |
+
)
|
943 |
|
944 |
# Launch the Gradio demo
|
945 |
demo.launch()
|