OpenSound's picture
Upload 33 files
71de706 verified
import csv
import glob
import math
import numbers
import os
import random
import typing
from contextlib import contextmanager
from dataclasses import dataclass
from pathlib import Path
from typing import Dict
from typing import List
import numpy as np
import torch
import torchaudio
from flatten_dict import flatten
from flatten_dict import unflatten
@dataclass
class Info:
"""Shim for torchaudio.info API changes."""
sample_rate: float
num_frames: int
@property
def duration(self) -> float:
return self.num_frames / self.sample_rate
def info(audio_path: str):
"""Shim for torchaudio.info to make 0.7.2 API match 0.8.0.
Parameters
----------
audio_path : str
Path to audio file.
"""
# try default backend first, then fallback to soundfile
try:
info = torchaudio.info(str(audio_path))
except: # pragma: no cover
info = torchaudio.backend.soundfile_backend.info(str(audio_path))
if isinstance(info, tuple): # pragma: no cover
signal_info = info[0]
info = Info(sample_rate=signal_info.rate, num_frames=signal_info.length)
else:
info = Info(sample_rate=info.sample_rate, num_frames=info.num_frames)
return info
def ensure_tensor(
x: typing.Union[np.ndarray, torch.Tensor, float, int],
ndim: int = None,
batch_size: int = None,
):
"""Ensures that the input ``x`` is a tensor of specified
dimensions and batch size.
Parameters
----------
x : typing.Union[np.ndarray, torch.Tensor, float, int]
Data that will become a tensor on its way out.
ndim : int, optional
How many dimensions should be in the output, by default None
batch_size : int, optional
The batch size of the output, by default None
Returns
-------
torch.Tensor
Modified version of ``x`` as a tensor.
"""
if not torch.is_tensor(x):
x = torch.as_tensor(x)
if ndim is not None:
assert x.ndim <= ndim
while x.ndim < ndim:
x = x.unsqueeze(-1)
if batch_size is not None:
if x.shape[0] != batch_size:
shape = list(x.shape)
shape[0] = batch_size
x = x.expand(*shape)
return x
def _get_value(other):
from . import AudioSignal
if isinstance(other, AudioSignal):
return other.audio_data
return other
def hz_to_bin(hz: torch.Tensor, n_fft: int, sample_rate: int):
"""Closest frequency bin given a frequency, number
of bins, and a sampling rate.
Parameters
----------
hz : torch.Tensor
Tensor of frequencies in Hz.
n_fft : int
Number of FFT bins.
sample_rate : int
Sample rate of audio.
Returns
-------
torch.Tensor
Closest bins to the data.
"""
shape = hz.shape
hz = hz.flatten()
freqs = torch.linspace(0, sample_rate / 2, 2 + n_fft // 2)
hz[hz > sample_rate / 2] = sample_rate / 2
closest = (hz[None, :] - freqs[:, None]).abs()
closest_bins = closest.min(dim=0).indices
return closest_bins.reshape(*shape)
def random_state(seed: typing.Union[int, np.random.RandomState]):
"""
Turn seed into a np.random.RandomState instance.
Parameters
----------
seed : typing.Union[int, np.random.RandomState] or None
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
Returns
-------
np.random.RandomState
Random state object.
Raises
------
ValueError
If seed is not valid, an error is thrown.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
elif isinstance(seed, (numbers.Integral, np.integer, int)):
return np.random.RandomState(seed)
elif isinstance(seed, np.random.RandomState):
return seed
else:
raise ValueError(
"%r cannot be used to seed a numpy.random.RandomState" " instance" % seed
)
def seed(random_seed, set_cudnn=False):
"""
Seeds all random states with the same random seed
for reproducibility. Seeds ``numpy``, ``random`` and ``torch``
random generators.
For full reproducibility, two further options must be set
according to the torch documentation:
https://pytorch.org/docs/stable/notes/randomness.html
To do this, ``set_cudnn`` must be True. It defaults to
False, since setting it to True results in a performance
hit.
Args:
random_seed (int): integer corresponding to random seed to
use.
set_cudnn (bool): Whether or not to set cudnn into determinstic
mode and off of benchmark mode. Defaults to False.
"""
torch.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
if set_cudnn:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
@contextmanager
def _close_temp_files(tmpfiles: list):
"""Utility function for creating a context and closing all temporary files
once the context is exited. For correct functionality, all temporary file
handles created inside the context must be appended to the ```tmpfiles```
list.
This function is taken wholesale from Scaper.
Parameters
----------
tmpfiles : list
List of temporary file handles
"""
def _close():
for t in tmpfiles:
try:
t.close()
os.unlink(t.name)
except:
pass
try:
yield
except: # pragma: no cover
_close()
raise
_close()
AUDIO_EXTENSIONS = [".wav", ".flac", ".mp3", ".mp4"]
def find_audio(folder: str, ext: List[str] = AUDIO_EXTENSIONS):
"""Finds all audio files in a directory recursively.
Returns a list.
Parameters
----------
folder : str
Folder to look for audio files in, recursively.
ext : List[str], optional
Extensions to look for without the ., by default
``['.wav', '.flac', '.mp3', '.mp4']``.
"""
folder = Path(folder)
# Take care of case where user has passed in an audio file directly
# into one of the calling functions.
if str(folder).endswith(tuple(ext)):
# if, however, there's a glob in the path, we need to
# return the glob, not the file.
if "*" in str(folder):
return glob.glob(str(folder), recursive=("**" in str(folder)))
else:
return [folder]
files = []
for x in ext:
files += folder.glob(f"**/*{x}")
return files
def read_sources(
sources: List[str],
remove_empty: bool = True,
relative_path: str = "",
ext: List[str] = AUDIO_EXTENSIONS,
):
"""Reads audio sources that can either be folders
full of audio files, or CSV files that contain paths
to audio files. CSV files that adhere to the expected
format can be generated by
:py:func:`audiotools.data.preprocess.create_csv`.
Parameters
----------
sources : List[str]
List of audio sources to be converted into a
list of lists of audio files.
remove_empty : bool, optional
Whether or not to remove rows with an empty "path"
from each CSV file, by default True.
Returns
-------
list
List of lists of rows of CSV files.
"""
files = []
relative_path = Path(relative_path)
for source in sources:
source = str(source)
_files = []
if source.endswith(".csv"):
with open(source, "r") as f:
reader = csv.DictReader(f)
for x in reader:
if remove_empty and x["path"] == "":
continue
if x["path"] != "":
x["path"] = str(relative_path / x["path"])
_files.append(x)
else:
for x in find_audio(source, ext=ext):
x = str(relative_path / x)
_files.append({"path": x})
files.append(sorted(_files, key=lambda x: x["path"]))
return files
def choose_from_list_of_lists(
state: np.random.RandomState, list_of_lists: list, p: float = None
):
"""Choose a single item from a list of lists.
Parameters
----------
state : np.random.RandomState
Random state to use when choosing an item.
list_of_lists : list
A list of lists from which items will be drawn.
p : float, optional
Probabilities of each list, by default None
Returns
-------
typing.Any
An item from the list of lists.
"""
source_idx = state.choice(list(range(len(list_of_lists))), p=p)
item_idx = state.randint(len(list_of_lists[source_idx]))
return list_of_lists[source_idx][item_idx], source_idx, item_idx
@contextmanager
def chdir(newdir: typing.Union[Path, str]):
"""
Context manager for switching directories to run a
function. Useful for when you want to use relative
paths to different runs.
Parameters
----------
newdir : typing.Union[Path, str]
Directory to switch to.
"""
curdir = os.getcwd()
try:
os.chdir(newdir)
yield
finally:
os.chdir(curdir)
def prepare_batch(batch: typing.Union[dict, list, torch.Tensor], device: str = "cpu"):
"""Moves items in a batch (typically generated by a DataLoader as a list
or a dict) to the specified device. This works even if dictionaries
are nested.
Parameters
----------
batch : typing.Union[dict, list, torch.Tensor]
Batch, typically generated by a dataloader, that will be moved to
the device.
device : str, optional
Device to move batch to, by default "cpu"
Returns
-------
typing.Union[dict, list, torch.Tensor]
Batch with all values moved to the specified device.
"""
if isinstance(batch, dict):
batch = flatten(batch)
for key, val in batch.items():
try:
batch[key] = val.to(device)
except:
pass
batch = unflatten(batch)
elif torch.is_tensor(batch):
batch = batch.to(device)
elif isinstance(batch, list):
for i in range(len(batch)):
try:
batch[i] = batch[i].to(device)
except:
pass
return batch
def sample_from_dist(dist_tuple: tuple, state: np.random.RandomState = None):
"""Samples from a distribution defined by a tuple. The first
item in the tuple is the distribution type, and the rest of the
items are arguments to that distribution. The distribution function
is gotten from the ``np.random.RandomState`` object.
Parameters
----------
dist_tuple : tuple
Distribution tuple
state : np.random.RandomState, optional
Random state, or seed to use, by default None
Returns
-------
typing.Union[float, int, str]
Draw from the distribution.
Examples
--------
Sample from a uniform distribution:
>>> dist_tuple = ("uniform", 0, 1)
>>> sample_from_dist(dist_tuple)
Sample from a constant distribution:
>>> dist_tuple = ("const", 0)
>>> sample_from_dist(dist_tuple)
Sample from a normal distribution:
>>> dist_tuple = ("normal", 0, 0.5)
>>> sample_from_dist(dist_tuple)
"""
if dist_tuple[0] == "const":
return dist_tuple[1]
state = random_state(state)
dist_fn = getattr(state, dist_tuple[0])
return dist_fn(*dist_tuple[1:])
def collate(list_of_dicts: list, n_splits: int = None):
"""Collates a list of dictionaries (e.g. as returned by a
dataloader) into a dictionary with batched values. This routine
uses the default torch collate function for everything
except AudioSignal objects, which are handled by the
:py:func:`audiotools.core.audio_signal.AudioSignal.batch`
function.
This function takes n_splits to enable splitting a batch
into multiple sub-batches for the purposes of gradient accumulation,
etc.
Parameters
----------
list_of_dicts : list
List of dictionaries to be collated.
n_splits : int
Number of splits to make when creating the batches (split into
sub-batches). Useful for things like gradient accumulation.
Returns
-------
dict
Dictionary containing batched data.
"""
from . import AudioSignal
batches = []
list_len = len(list_of_dicts)
return_list = False if n_splits is None else True
n_splits = 1 if n_splits is None else n_splits
n_items = int(math.ceil(list_len / n_splits))
for i in range(0, list_len, n_items):
# Flatten the dictionaries to avoid recursion.
list_of_dicts_ = [flatten(d) for d in list_of_dicts[i : i + n_items]]
dict_of_lists = {
k: [dic[k] for dic in list_of_dicts_] for k in list_of_dicts_[0]
}
batch = {}
for k, v in dict_of_lists.items():
if isinstance(v, list):
if all(isinstance(s, AudioSignal) for s in v):
batch[k] = AudioSignal.batch(v, pad_signals=True)
else:
# Borrow the default collate fn from torch.
batch[k] = torch.utils.data._utils.collate.default_collate(v)
batches.append(unflatten(batch))
batches = batches[0] if not return_list else batches
return batches
BASE_SIZE = 864
DEFAULT_FIG_SIZE = (9, 3)
def format_figure(
fig_size: tuple = None,
title: str = None,
fig=None,
format_axes: bool = True,
format: bool = True,
font_color: str = "white",
):
"""Prettifies the spectrogram and waveform plots. A title
can be inset into the top right corner, and the axes can be
inset into the figure, allowing the data to take up the entire
image. Used in
- :py:func:`audiotools.core.display.DisplayMixin.specshow`
- :py:func:`audiotools.core.display.DisplayMixin.waveplot`
- :py:func:`audiotools.core.display.DisplayMixin.wavespec`
Parameters
----------
fig_size : tuple, optional
Size of figure, by default (9, 3)
title : str, optional
Title to inset in top right, by default None
fig : matplotlib.figure.Figure, optional
Figure object, if None ``plt.gcf()`` will be used, by default None
format_axes : bool, optional
Format the axes to be inside the figure, by default True
format : bool, optional
This formatting can be skipped entirely by passing ``format=False``
to any of the plotting functions that use this formater, by default True
font_color : str, optional
Color of font of axes, by default "white"
"""
import matplotlib
import matplotlib.pyplot as plt
if fig_size is None:
fig_size = DEFAULT_FIG_SIZE
if not format:
return
if fig is None:
fig = plt.gcf()
fig.set_size_inches(*fig_size)
axs = fig.axes
pixels = (fig.get_size_inches() * fig.dpi)[0]
font_scale = pixels / BASE_SIZE
if format_axes:
axs = fig.axes
for ax in axs:
ymin, _ = ax.get_ylim()
xmin, _ = ax.get_xlim()
ticks = ax.get_yticks()
for t in ticks[2:-1]:
t = axs[0].annotate(
f"{(t / 1000):2.1f}k",
xy=(xmin, t),
xycoords="data",
xytext=(5, -5),
textcoords="offset points",
ha="left",
va="top",
color=font_color,
fontsize=12 * font_scale,
alpha=0.75,
)
ticks = ax.get_xticks()[2:]
for t in ticks[:-1]:
t = axs[0].annotate(
f"{t:2.1f}s",
xy=(t, ymin),
xycoords="data",
xytext=(5, 5),
textcoords="offset points",
ha="center",
va="bottom",
color=font_color,
fontsize=12 * font_scale,
alpha=0.75,
)
ax.margins(0, 0)
ax.set_axis_off()
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator())
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
if title is not None:
t = axs[0].annotate(
title,
xy=(1, 1),
xycoords="axes fraction",
fontsize=20 * font_scale,
xytext=(-5, -5),
textcoords="offset points",
ha="right",
va="top",
color="white",
)
t.set_bbox(dict(facecolor="black", alpha=0.5, edgecolor="black"))
def generate_chord_dataset(
max_voices: int = 8,
sample_rate: int = 44100,
num_items: int = 5,
duration: float = 1.0,
min_note: str = "C2",
max_note: str = "C6",
output_dir: Path = "chords",
):
"""
Generates a toy multitrack dataset of chords, synthesized from sine waves.
Parameters
----------
max_voices : int, optional
Maximum number of voices in a chord, by default 8
sample_rate : int, optional
Sample rate of audio, by default 44100
num_items : int, optional
Number of items to generate, by default 5
duration : float, optional
Duration of each item, by default 1.0
min_note : str, optional
Minimum note in the dataset, by default "C2"
max_note : str, optional
Maximum note in the dataset, by default "C6"
output_dir : Path, optional
Directory to save the dataset, by default "chords"
"""
import librosa
from . import AudioSignal
from ..data.preprocess import create_csv
min_midi = librosa.note_to_midi(min_note)
max_midi = librosa.note_to_midi(max_note)
tracks = []
for idx in range(num_items):
track = {}
# figure out how many voices to put in this track
num_voices = random.randint(1, max_voices)
for voice_idx in range(num_voices):
# choose some random params
midinote = random.randint(min_midi, max_midi)
dur = random.uniform(0.85 * duration, duration)
sig = AudioSignal.wave(
frequency=librosa.midi_to_hz(midinote),
duration=dur,
sample_rate=sample_rate,
shape="sine",
)
track[f"voice_{voice_idx}"] = sig
tracks.append(track)
# save the tracks to disk
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True)
for idx, track in enumerate(tracks):
track_dir = output_dir / f"track_{idx}"
track_dir.mkdir(exist_ok=True)
for voice_name, sig in track.items():
sig.write(track_dir / f"{voice_name}.wav")
all_voices = list(set([k for track in tracks for k in track.keys()]))
voice_lists = {voice: [] for voice in all_voices}
for track in tracks:
for voice_name in all_voices:
if voice_name in track:
voice_lists[voice_name].append(track[voice_name].path_to_file)
else:
voice_lists[voice_name].append("")
for voice_name, paths in voice_lists.items():
create_csv(paths, output_dir / f"{voice_name}.csv", loudness=True)
return output_dir