Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import random | |
import numpy as np | |
import gradio as gr | |
import librosa | |
import spaces | |
from accelerate import Accelerator | |
from transformers import T5Tokenizer, T5EncoderModel | |
from diffusers import DDIMScheduler | |
from src.models.conditioners import MaskDiT | |
from src.modules.autoencoder_wrapper import Autoencoder | |
from src.inference import inference | |
from src.utils import load_yaml_with_includes | |
# Load model and configs | |
def load_models(config_name, ckpt_path, vae_path, device): | |
params = load_yaml_with_includes(config_name) | |
# Load codec model | |
autoencoder = Autoencoder(ckpt_path=vae_path, | |
model_type=params['autoencoder']['name'], | |
quantization_first=params['autoencoder']['q_first']).to(device) | |
autoencoder.eval() | |
# Load text encoder | |
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model']) | |
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device) | |
text_encoder.eval() | |
# Load main U-Net model | |
unet = MaskDiT(**params['model']).to(device) | |
unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model']) | |
unet.eval() | |
accelerator = Accelerator(mixed_precision="fp16") | |
unet = accelerator.prepare(unet) | |
# Load noise scheduler | |
noise_scheduler = DDIMScheduler(**params['diff']) | |
latents = torch.randn((1, 128, 128), device=device) | |
noise = torch.randn_like(latents) | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device) | |
_ = noise_scheduler.add_noise(latents, noise, timesteps) | |
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params | |
MAX_SEED = np.iinfo(np.int32).max | |
# Model and config paths | |
config_name = 'ckpts/ezaudio-xl.yml' | |
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt' | |
vae_path = 'ckpts/vae/1m.pt' | |
# save_path = 'output/' | |
# os.makedirs(save_path, exist_ok=True) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path, | |
device) | |
def generate_audio(text, length, | |
guidance_scale, guidance_rescale, ddim_steps, eta, | |
random_seed, randomize_seed): | |
neg_text = None | |
length = length * params['autoencoder']['latent_sr'] | |
gt, gt_mask = None, None | |
if text == '': | |
guidance_scale = None | |
print('empyt input') | |
if randomize_seed: | |
random_seed = random.randint(0, MAX_SEED) | |
pred = inference(autoencoder, unet, | |
gt, gt_mask, | |
tokenizer, text_encoder, | |
params, noise_scheduler, | |
text, neg_text, | |
length, | |
guidance_scale, guidance_rescale, | |
ddim_steps, eta, random_seed, | |
device) | |
pred = pred.cpu().numpy().squeeze(0).squeeze(0) | |
# output_file = f"{save_path}/{text}.wav" | |
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr']) | |
return params['autoencoder']['sr'], pred | |
def editing_audio(text, boundary, | |
gt_file, mask_start, mask_length, | |
guidance_scale, guidance_rescale, ddim_steps, eta, | |
random_seed, randomize_seed): | |
neg_text = None | |
# max_length = 10 | |
if text == '': | |
guidance_scale = None | |
print('empyt input') | |
mask_end = mask_start + mask_length | |
# Load and preprocess ground truth audio | |
gt, sr = librosa.load(gt_file, sr=params['autoencoder']['sr']) | |
gt = gt / (np.max(np.abs(gt)) + 1e-9) | |
audio_length = len(gt) / sr | |
mask_start = min(mask_start, audio_length) | |
if mask_end > audio_length: | |
# outpadding mode | |
padding = round((mask_end - audio_length)*params['autoencoder']['sr']) | |
gt = np.pad(gt, (0, padding), 'constant') | |
audio_length = len(gt) / sr | |
output_audio = gt.copy() | |
gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device) | |
boundary = min((mask_end - mask_start)/2, boundary) | |
# print(boundary) | |
# Calculate start and end indices | |
start_idx = max(mask_start - boundary, 0) | |
end_idx = min(mask_end + boundary, audio_length) | |
# print(start_idx) | |
# print(end_idx) | |
mask_start -= start_idx | |
mask_end -= start_idx | |
gt = gt[:, :, round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])] | |
# Encode the audio to latent space | |
gt_latent = autoencoder(audio=gt) | |
B, D, L = gt_latent.shape | |
length = L | |
gt_mask = torch.zeros(B, D, L).to(device) | |
latent_sr = params['autoencoder']['latent_sr'] | |
gt_mask[:, :, round(mask_start * latent_sr): round(mask_end * latent_sr)] = 1 | |
gt_mask = gt_mask.bool() | |
if randomize_seed: | |
random_seed = random.randint(0, MAX_SEED) | |
# Perform inference to get the edited latent representation | |
pred = inference(autoencoder, unet, | |
gt_latent, gt_mask, | |
tokenizer, text_encoder, | |
params, noise_scheduler, | |
text, neg_text, | |
length, | |
guidance_scale, guidance_rescale, | |
ddim_steps, eta, random_seed, | |
device) | |
pred = pred.cpu().numpy().squeeze(0).squeeze(0) | |
chunk_length = end_idx - start_idx | |
pred = pred[:round(chunk_length*params['autoencoder']['sr'])] | |
output_audio[round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])] = pred | |
pred = output_audio | |
return params['autoencoder']['sr'], pred | |
# Examples (if needed for the demo) | |
examples = [ | |
"a dog barking in the distance", | |
"light guitar music is playing", | |
"a duck quacks as waves crash gently on the shore", | |
"a horse clip-clops in a windy rain as thunder cracks in the distance", | |
"fireworks crackle overhead, followed by the screech of tires as a vehicle speeds down the slick, rain-soaked street.", | |
] | |
# Examples (if needed for the demo) | |
examples_edit = [ | |
["a dog barking in the background", 2, 3], | |
["kids playing and laughing nearby", 5, 4], | |
["rock music playing on the street", 8, 6] | |
] | |
# CSS styling (optional) | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1280px; | |
} | |
""" | |
# Gradio Blocks layout | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# EzAudio: High-quality Text-to-Audio Generator | |
Generate and edit audio from text using a diffusion transformer. Adjust advanced settings for more control. | |
[Learn more about 😈EzAudio](https://haidog-yaqub.github.io/EzAudio-Page/) | |
""") | |
# Tabs for Generate and Edit | |
with gr.Tab("Audio Generation"): | |
# Basic Input: Text prompt | |
with gr.Row(): | |
text_input = gr.Textbox( | |
label="Text Prompt", | |
show_label=True, | |
max_lines=2, | |
placeholder="Enter your prompt", | |
container=True, | |
value="a dog barking in the distance", | |
scale=4 | |
) | |
# Run button | |
run_button = gr.Button("Generate", scale=1) | |
# Output Component | |
result = gr.Audio(label="Generated Audio", type="numpy") | |
# Advanced settings in an Accordion | |
with gr.Accordion("Advanced Settings", open=False): | |
# Audio Length | |
audio_length = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)") | |
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale") | |
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale") | |
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps") | |
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta") | |
seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed") | |
randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True) | |
# Examples block | |
gr.Examples( | |
examples=examples, | |
inputs=[text_input] | |
) | |
# Define the trigger and input-output linking for generation | |
run_button.click( | |
fn=generate_audio, | |
inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed], | |
outputs=[result] | |
) | |
text_input.submit(fn=generate_audio, | |
inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed], | |
outputs=[result] | |
) | |
with gr.Tab("Audio Editing and Inpainting"): | |
# Input: Upload audio file | |
with gr.Row(): | |
gt_file_input = gr.Audio(label="Upload Audio to Edit", type="filepath", value="edit_example.wav") | |
# Text prompt for editing | |
text_edit_input = gr.Textbox( | |
label="Edit Prompt", | |
show_label=True, | |
max_lines=2, | |
placeholder="Describe the edit you wat", | |
container=True, | |
value="a dog barking in the background", | |
scale=4 | |
) | |
# Mask settings | |
mask_start = gr.Number(label="Edit Start (seconds)", value=2.0) | |
mask_length = gr.Slider(minimum=0.5, maximum=10, step=0.5, value=3, label="Edit Length (seconds)") | |
edit_explanation = gr.Markdown(value="**Edit Start**: The time when the edit begins. \n\n**Edit Length**: The duration of the segment to be edited. \n\n**Outpainting**: If the edit extends beyond the audio's length, Outpainting Mode will automatically activate.") | |
# Run button for editing | |
edit_button = gr.Button("Generate", scale=1) | |
# Output Component for edited audio | |
edited_result = gr.Audio(label="Edited Audio", type="numpy") | |
# Advanced settings in an Accordion | |
with gr.Accordion("Advanced Settings", open=False): | |
# Audio Length (optional for editing, can be auto or user-defined) | |
edit_boundary = gr.Slider(minimum=0.5, maximum=4, step=0.5, value=2, label="Edit Boundary (in seconds)") | |
edit_guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.5, value=3.0, label="Guidance Scale") | |
edit_guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.0, label="Guidance Rescale") | |
edit_ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps") | |
edit_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta") | |
edit_seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed") | |
edit_randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True) | |
# Examples block | |
gr.Examples( | |
examples=examples_edit, | |
inputs=[text_edit_input, mask_start, mask_length] | |
) | |
# Define the trigger and input-output linking for editing | |
edit_button.click( | |
fn=editing_audio, | |
inputs=[ | |
text_edit_input, | |
edit_boundary, | |
gt_file_input, | |
mask_start, | |
mask_length, | |
edit_guidance_scale, | |
edit_guidance_rescale, | |
edit_ddim_steps, | |
edit_eta, | |
edit_seed, | |
edit_randomize_seed | |
], | |
outputs=[edited_result] | |
) | |
text_edit_input.submit( | |
fn=editing_audio, | |
inputs=[ | |
text_edit_input, | |
edit_boundary, | |
gt_file_input, | |
mask_start, | |
mask_length, | |
edit_guidance_scale, | |
edit_guidance_rescale, | |
edit_ddim_steps, | |
edit_eta, | |
edit_seed, | |
edit_randomize_seed | |
], | |
outputs=[edited_result] | |
) | |
# Launch the Gradio demo | |
demo.launch() | |