EzAudio / app.py
OpenSound's picture
Update app.py
7a3d4fd verified
raw
history blame
12.5 kB
import os
import torch
import random
import numpy as np
import gradio as gr
import librosa
import spaces
from accelerate import Accelerator
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import DDIMScheduler
from src.models.conditioners import MaskDiT
from src.modules.autoencoder_wrapper import Autoencoder
from src.inference import inference
from src.utils import load_yaml_with_includes
# Load model and configs
def load_models(config_name, ckpt_path, vae_path, device):
params = load_yaml_with_includes(config_name)
# Load codec model
autoencoder = Autoencoder(ckpt_path=vae_path,
model_type=params['autoencoder']['name'],
quantization_first=params['autoencoder']['q_first']).to(device)
autoencoder.eval()
# Load text encoder
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
text_encoder.eval()
# Load main U-Net model
unet = MaskDiT(**params['model']).to(device)
unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model'])
unet.eval()
accelerator = Accelerator(mixed_precision="fp16")
unet = accelerator.prepare(unet)
# Load noise scheduler
noise_scheduler = DDIMScheduler(**params['diff'])
latents = torch.randn((1, 128, 128), device=device)
noise = torch.randn_like(latents)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
_ = noise_scheduler.add_noise(latents, noise, timesteps)
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params
MAX_SEED = np.iinfo(np.int32).max
# Model and config paths
config_name = 'ckpts/ezaudio-xl.yml'
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
vae_path = 'ckpts/vae/1m.pt'
# save_path = 'output/'
# os.makedirs(save_path, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
device)
@spaces.GPU
def generate_audio(text, length,
guidance_scale, guidance_rescale, ddim_steps, eta,
random_seed, randomize_seed):
neg_text = None
length = length * params['autoencoder']['latent_sr']
gt, gt_mask = None, None
if text == '':
guidance_scale = None
print('empyt input')
if randomize_seed:
random_seed = random.randint(0, MAX_SEED)
pred = inference(autoencoder, unet,
gt, gt_mask,
tokenizer, text_encoder,
params, noise_scheduler,
text, neg_text,
length,
guidance_scale, guidance_rescale,
ddim_steps, eta, random_seed,
device)
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
# output_file = f"{save_path}/{text}.wav"
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr'])
return params['autoencoder']['sr'], pred
@spaces.GPU
def editing_audio(text, boundary,
gt_file, mask_start, mask_length,
guidance_scale, guidance_rescale, ddim_steps, eta,
random_seed, randomize_seed):
neg_text = None
max_length = 10
if text == '':
guidance_scale = None
print('empyt input')
mask_end = mask_start + mask_length
# Load and preprocess ground truth audio
gt, sr = librosa.load(gt_file, sr=params['autoencoder']['sr'])
gt = gt / (np.max(np.abs(gt)) + 1e-9)
audio_length = len(gt) / sr
mask_start = min(mask_start, audio_length)
if mask_end > audio_length:
# outpadding mode
padding = round((mask_end - audio_length)*params['autoencoder']['sr'])
gt = np.pad(gt, (0, padding), 'constant')
audio_length = len(gt) / sr
output_audio = gt.copy()
gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
boundary = min((max_length - (mask_end - mask_start))/2, (mask_end - mask_start)/2, boundary)
# print(boundary)
# Calculate start and end indices
start_idx = max(mask_start - boundary, 0)
end_idx = min(mask_end + boundary, audio_length)
# print(start_idx)
# print(end_idx)
mask_start -= start_idx
mask_end -= start_idx
gt = gt[:, :, round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])]
# Encode the audio to latent space
gt_latent = autoencoder(audio=gt)
B, D, L = gt_latent.shape
length = L
gt_mask = torch.zeros(B, D, L).to(device)
latent_sr = params['autoencoder']['latent_sr']
gt_mask[:, :, round(mask_start * latent_sr): round(mask_end * latent_sr)] = 1
gt_mask = gt_mask.bool()
if randomize_seed:
random_seed = random.randint(0, MAX_SEED)
# Perform inference to get the edited latent representation
pred = inference(autoencoder, unet,
gt_latent, gt_mask,
tokenizer, text_encoder,
params, noise_scheduler,
text, neg_text,
length,
guidance_scale, guidance_rescale,
ddim_steps, eta, random_seed,
device)
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
chunk_length = end_idx - start_idx
pred = pred[:round(chunk_length*params['autoencoder']['sr'])]
output_audio[round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])] = pred
pred = output_audio
return params['autoencoder']['sr'], pred
# Examples (if needed for the demo)
examples = [
"a dog barking in the distance",
"the sound of rain falling softly",
"light guitar music is playing",
]
# Examples (if needed for the demo)
examples_edit = [
["a dog barking in the background", 6, 3],
["kids playing and laughing nearby", 5, 4],
["rock music playing on the street", 8, 6]
]
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# EzAudio: High-quality Text-to-Audio Generator
Generate and edit audio from text using a diffusion transformer. Adjust advanced settings for more control.
""")
# Tabs for Generate and Edit
with gr.Tab("Audio Generation"):
# Basic Input: Text prompt
with gr.Row():
text_input = gr.Textbox(
label="Text Prompt",
show_label=True,
max_lines=2,
placeholder="Enter your prompt",
container=True,
value="a dog barking in the distance",
scale=4
)
# Run button
run_button = gr.Button("Generate", scale=1)
# Output Component
result = gr.Audio(label="Generate", type="numpy")
# Advanced settings in an Accordion
with gr.Accordion("Advanced Settings", open=False):
# Audio Length
audio_length = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale")
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)
# Examples block
gr.Examples(
examples=examples,
inputs=[text_input]
)
# Define the trigger and input-output linking for generation
run_button.click(
fn=generate_audio,
inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
outputs=[result]
)
text_input.submit(fn=generate_audio,
inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
outputs=[result]
)
with gr.Tab("Audio Editing and Inpainting"):
# Input: Upload audio file
with gr.Row():
gt_file_input = gr.Audio(label="Upload Audio to Edit", type="filepath", value="edit_example.wav")
# Text prompt for editing
text_edit_input = gr.Textbox(
label="Edit Prompt",
show_label=True,
max_lines=2,
placeholder="Describe the edit you wat",
container=True,
value="a dog barking in the background",
scale=4
)
# Mask settings
mask_start = gr.Number(label="Edit Start (seconds)", value=6.0)
mask_length = gr.Slider(minimum=0.5, maximum=10, step=0.5, value=3, label="Edit Length (seconds)")
edit_explanation = gr.Markdown(value="**Edit Start**: Time (in seconds) when the edit begins. \n\n**Edit Length**: Duration (in seconds) of the segment to be edited. \n\n**Outpainting**: If the sum of the start time and edit length exceeds the audio length, the Outpainting Mode will be activated.")
# Run button for editing
edit_button = gr.Button("Generate", scale=1)
# Output Component for edited audio
edited_result = gr.Audio(label="Edited Audio", type="numpy")
# Advanced settings in an Accordion
with gr.Accordion("Advanced Settings", open=False):
# Audio Length (optional for editing, can be auto or user-defined)
edit_boundary = gr.Slider(minimum=0.5, maximum=4, step=0.5, value=2, label="Edit Boundary (in seconds)")
edit_guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.5, value=5.0, label="Guidance Scale")
edit_guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
edit_ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
edit_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
edit_seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
edit_randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)
# Examples block
gr.Examples(
examples=examples_edit,
inputs=[text_edit_input, mask_start, mask_length]
)
# Define the trigger and input-output linking for editing
edit_button.click(
fn=editing_audio,
inputs=[
text_edit_input,
edit_boundary,
gt_file_input,
mask_start,
mask_length,
edit_guidance_scale,
edit_guidance_rescale,
edit_ddim_steps,
edit_eta,
edit_seed,
edit_randomize_seed
],
outputs=[edited_result]
)
text_edit_input.submit(
fn=editing_audio,
inputs=[
text_edit_input,
edit_boundary,
gt_file_input,
mask_start,
mask_length,
edit_guidance_scale,
edit_guidance_rescale,
edit_ddim_steps,
edit_eta,
edit_seed,
edit_randomize_seed
],
outputs=[edited_result]
)
# Launch the Gradio demo
demo.launch()