File size: 9,678 Bytes
b9d6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import math
from dataclasses import dataclass
from pathlib import Path
from typing import Union

import numpy as np
import torch
import tqdm
from audiotools import AudioSignal
from torch import nn

SUPPORTED_VERSIONS = ["1.0.0"]


@dataclass
class DACFile:
    codes: torch.Tensor

    # Metadata
    chunk_length: int
    original_length: int
    input_db: float
    channels: int
    sample_rate: int
    padding: bool
    dac_version: str

    def save(self, path):
        artifacts = {
            "codes": self.codes.numpy().astype(np.uint16),
            "metadata": {
                "input_db": self.input_db.numpy().astype(np.float32),
                "original_length": self.original_length,
                "sample_rate": self.sample_rate,
                "chunk_length": self.chunk_length,
                "channels": self.channels,
                "padding": self.padding,
                "dac_version": SUPPORTED_VERSIONS[-1],
            },
        }
        path = Path(path).with_suffix(".dac")
        with open(path, "wb") as f:
            np.save(f, artifacts)
        return path

    @classmethod
    def load(cls, path):
        artifacts = np.load(path, allow_pickle=True)[()]
        codes = torch.from_numpy(artifacts["codes"].astype(int))
        if artifacts["metadata"].get("dac_version", None) not in SUPPORTED_VERSIONS:
            raise RuntimeError(
                f"Given file {path} can't be loaded with this version of descript-audio-codec."
            )
        return cls(codes=codes, **artifacts["metadata"])


class CodecMixin:
    @property
    def padding(self):
        if not hasattr(self, "_padding"):
            self._padding = True
        return self._padding

    @padding.setter
    def padding(self, value):
        assert isinstance(value, bool)

        layers = [
            l for l in self.modules() if isinstance(l, (nn.Conv1d, nn.ConvTranspose1d))
        ]

        for layer in layers:
            if value:
                if hasattr(layer, "original_padding"):
                    layer.padding = layer.original_padding
            else:
                layer.original_padding = layer.padding
                layer.padding = tuple(0 for _ in range(len(layer.padding)))

        self._padding = value

    def get_delay(self):
        # Any number works here, delay is invariant to input length
        l_out = self.get_output_length(0)
        L = l_out

        layers = []
        for layer in self.modules():
            if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
                layers.append(layer)

        for layer in reversed(layers):
            d = layer.dilation[0]
            k = layer.kernel_size[0]
            s = layer.stride[0]

            if isinstance(layer, nn.ConvTranspose1d):
                L = ((L - d * (k - 1) - 1) / s) + 1
            elif isinstance(layer, nn.Conv1d):
                L = (L - 1) * s + d * (k - 1) + 1

            L = math.ceil(L)

        l_in = L

        return (l_in - l_out) // 2

    def get_output_length(self, input_length):
        L = input_length
        # Calculate output length
        for layer in self.modules():
            if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
                d = layer.dilation[0]
                k = layer.kernel_size[0]
                s = layer.stride[0]

                if isinstance(layer, nn.Conv1d):
                    L = ((L - d * (k - 1) - 1) / s) + 1
                elif isinstance(layer, nn.ConvTranspose1d):
                    L = (L - 1) * s + d * (k - 1) + 1

                L = math.floor(L)
        return L

    @torch.no_grad()
    def compress(

        self,

        audio_path_or_signal: Union[str, Path, AudioSignal],

        win_duration: float = 1.0,

        verbose: bool = False,

        normalize_db: float = -16,

        n_quantizers: int = None,

    ) -> DACFile:
        """Processes an audio signal from a file or AudioSignal object into

        discrete codes. This function processes the signal in short windows,

        using constant GPU memory.



        Parameters

        ----------

        audio_path_or_signal : Union[str, Path, AudioSignal]

            audio signal to reconstruct

        win_duration : float, optional

            window duration in seconds, by default 5.0

        verbose : bool, optional

            by default False

        normalize_db : float, optional

            normalize db, by default -16



        Returns

        -------

        DACFile

            Object containing compressed codes and metadata

            required for decompression

        """
        audio_signal = audio_path_or_signal
        if isinstance(audio_signal, (str, Path)):
            audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))

        self.eval()
        original_padding = self.padding
        original_device = audio_signal.device

        audio_signal = audio_signal.clone()
        original_sr = audio_signal.sample_rate

        resample_fn = audio_signal.resample
        loudness_fn = audio_signal.loudness

        # If audio is > 10 minutes long, use the ffmpeg versions
        if audio_signal.signal_duration >= 10 * 60 * 60:
            resample_fn = audio_signal.ffmpeg_resample
            loudness_fn = audio_signal.ffmpeg_loudness

        original_length = audio_signal.signal_length
        resample_fn(self.sample_rate)
        input_db = loudness_fn()

        if normalize_db is not None:
            audio_signal.normalize(normalize_db)
        audio_signal.ensure_max_of_audio()

        nb, nac, nt = audio_signal.audio_data.shape
        audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
        win_duration = (
            audio_signal.signal_duration if win_duration is None else win_duration
        )

        if audio_signal.signal_duration <= win_duration:
            # Unchunked compression (used if signal length < win duration)
            self.padding = True
            n_samples = nt
            hop = nt
        else:
            # Chunked inference
            self.padding = False
            # Zero-pad signal on either side by the delay
            audio_signal.zero_pad(self.delay, self.delay)
            n_samples = int(win_duration * self.sample_rate)
            # Round n_samples to nearest hop length multiple
            n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
            hop = self.get_output_length(n_samples)

        codes = []
        range_fn = range if not verbose else tqdm.trange

        for i in range_fn(0, nt, hop):
            x = audio_signal[..., i : i + n_samples]
            x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))

            audio_data = x.audio_data.to(self.device)
            audio_data = self.preprocess(audio_data, self.sample_rate)
            _, c, _, _, _ = self.encode(audio_data, n_quantizers)
            codes.append(c.to(original_device))
            chunk_length = c.shape[-1]

        codes = torch.cat(codes, dim=-1)

        dac_file = DACFile(
            codes=codes,
            chunk_length=chunk_length,
            original_length=original_length,
            input_db=input_db,
            channels=nac,
            sample_rate=original_sr,
            padding=self.padding,
            dac_version=SUPPORTED_VERSIONS[-1],
        )

        if n_quantizers is not None:
            codes = codes[:, :n_quantizers, :]

        self.padding = original_padding
        return dac_file

    @torch.no_grad()
    def decompress(

        self,

        obj: Union[str, Path, DACFile],

        verbose: bool = False,

    ) -> AudioSignal:
        """Reconstruct audio from a given .dac file



        Parameters

        ----------

        obj : Union[str, Path, DACFile]

            .dac file location or corresponding DACFile object.

        verbose : bool, optional

            Prints progress if True, by default False



        Returns

        -------

        AudioSignal

            Object with the reconstructed audio

        """
        self.eval()
        if isinstance(obj, (str, Path)):
            obj = DACFile.load(obj)

        original_padding = self.padding
        self.padding = obj.padding

        range_fn = range if not verbose else tqdm.trange
        codes = obj.codes
        original_device = codes.device
        chunk_length = obj.chunk_length
        recons = []

        for i in range_fn(0, codes.shape[-1], chunk_length):
            c = codes[..., i : i + chunk_length].to(self.device)
            z = self.quantizer.from_codes(c)[0]
            r = self.decode(z)
            recons.append(r.to(original_device))

        recons = torch.cat(recons, dim=-1)
        recons = AudioSignal(recons, self.sample_rate)

        resample_fn = recons.resample
        loudness_fn = recons.loudness

        # If audio is > 10 minutes long, use the ffmpeg versions
        if recons.signal_duration >= 10 * 60 * 60:
            resample_fn = recons.ffmpeg_resample
            loudness_fn = recons.ffmpeg_loudness

        recons.normalize(obj.input_db)
        resample_fn(obj.sample_rate)
        recons = recons[..., : obj.original_length]
        loudness_fn()
        recons.audio_data = recons.audio_data.reshape(
            -1, obj.channels, obj.original_length
        )

        self.padding = original_padding
        return recons