File size: 12,734 Bytes
d9a7330
 
 
 
 
f2bd5dc
7a3d4fd
eb39bd3
d9a7330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90e89d
d9a7330
 
eb39bd3
 
 
d9a7330
 
eb39bd3
d9a7330
 
 
 
 
 
 
eb39bd3
d9a7330
 
 
 
 
 
f2bd5dc
 
d9a7330
 
 
 
 
eb39bd3
d9a7330
 
 
 
 
 
 
f2bd5dc
 
 
 
 
 
d9a7330
 
 
f2bd5dc
 
d9a7330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2bd5dc
 
 
 
 
 
16dd821
f2bd5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9ff7f9
f2bd5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d104f9
 
 
 
a5f974a
075cfff
a5f974a
5d104f9
 
f2bd5dc
 
8dccda8
f2bd5dc
 
 
 
 
5d104f9
 
 
 
 
 
 
 
 
 
 
 
f46017a
 
 
 
5d104f9
 
f46017a
f2bd5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3872a8d
f2bd5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dccda8
f2bd5dc
c69a5d4
 
f2bd5dc
 
 
 
 
 
 
 
 
 
 
b115888
 
f2bd5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import torch
import random
import numpy as np
import gradio as gr
import librosa
import spaces
from accelerate import Accelerator
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import DDIMScheduler
from src.models.conditioners import MaskDiT
from src.modules.autoencoder_wrapper import Autoencoder
from src.inference import inference
from src.utils import load_yaml_with_includes


# Load model and configs
def load_models(config_name, ckpt_path, vae_path, device):
    params = load_yaml_with_includes(config_name)

    # Load codec model
    autoencoder = Autoencoder(ckpt_path=vae_path,
                              model_type=params['autoencoder']['name'],
                              quantization_first=params['autoencoder']['q_first']).to(device)
    autoencoder.eval()

    # Load text encoder
    tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
    text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
    text_encoder.eval()

    # Load main U-Net model
    unet = MaskDiT(**params['model']).to(device)
    unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model'])
    unet.eval()

    accelerator = Accelerator(mixed_precision="fp16")
    unet = accelerator.prepare(unet)

    # Load noise scheduler
    noise_scheduler = DDIMScheduler(**params['diff'])

    latents = torch.randn((1, 128, 128), device=device)
    noise = torch.randn_like(latents)
    timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
    _ = noise_scheduler.add_noise(latents, noise, timesteps)

    return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params


MAX_SEED = np.iinfo(np.int32).max

# Model and config paths
config_name = 'ckpts/ezaudio-xl.yml'
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
vae_path = 'ckpts/vae/1m.pt'
# save_path = 'output/'
# os.makedirs(save_path, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'

autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
                                                                                  device)


@spaces.GPU
def generate_audio(text, length,
                   guidance_scale, guidance_rescale, ddim_steps, eta,
                   random_seed, randomize_seed):
    neg_text = None
    length = length * params['autoencoder']['latent_sr']

    gt, gt_mask = None, None

    if text == '':
        guidance_scale = None
        print('empyt input')

    if randomize_seed:
        random_seed = random.randint(0, MAX_SEED)

    pred = inference(autoencoder, unet,
                     gt, gt_mask,
                     tokenizer, text_encoder,
                     params, noise_scheduler,
                     text, neg_text,
                     length,
                     guidance_scale, guidance_rescale,
                     ddim_steps, eta, random_seed,
                     device)

    pred = pred.cpu().numpy().squeeze(0).squeeze(0)
    # output_file = f"{save_path}/{text}.wav"
    # sf.write(output_file, pred, samplerate=params['autoencoder']['sr'])

    return params['autoencoder']['sr'], pred


@spaces.GPU
def editing_audio(text, boundary,
                  gt_file, mask_start, mask_length,
                  guidance_scale, guidance_rescale, ddim_steps, eta,
                  random_seed, randomize_seed):
    neg_text = None
    # max_length = 10

    if text == '':
        guidance_scale = None
        print('empyt input')

    mask_end = mask_start + mask_length

    # Load and preprocess ground truth audio
    gt, sr = librosa.load(gt_file, sr=params['autoencoder']['sr'])
    gt = gt / (np.max(np.abs(gt)) + 1e-9)

    audio_length = len(gt) / sr
    mask_start = min(mask_start, audio_length)
    if mask_end > audio_length:
        # outpadding mode
        padding = round((mask_end - audio_length)*params['autoencoder']['sr'])
        gt = np.pad(gt, (0, padding), 'constant')
        audio_length = len(gt) / sr

    output_audio = gt.copy()

    gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
    boundary = min((mask_end - mask_start)/2, boundary)
    # print(boundary)

    # Calculate start and end indices
    start_idx = max(mask_start - boundary, 0)
    end_idx = min(mask_end + boundary, audio_length)
    # print(start_idx)
    # print(end_idx)

    mask_start -= start_idx
    mask_end -= start_idx

    gt = gt[:, :, round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])]

    # Encode the audio to latent space
    gt_latent = autoencoder(audio=gt)
    B, D, L = gt_latent.shape
    length = L

    gt_mask = torch.zeros(B, D, L).to(device)
    latent_sr = params['autoencoder']['latent_sr']
    gt_mask[:, :, round(mask_start * latent_sr): round(mask_end * latent_sr)] = 1
    gt_mask = gt_mask.bool()

    if randomize_seed:
        random_seed = random.randint(0, MAX_SEED)

    # Perform inference to get the edited latent representation
    pred = inference(autoencoder, unet,
                     gt_latent, gt_mask,
                     tokenizer, text_encoder,
                     params, noise_scheduler,
                     text, neg_text,
                     length,
                     guidance_scale, guidance_rescale,
                     ddim_steps, eta, random_seed,
                     device)

    pred = pred.cpu().numpy().squeeze(0).squeeze(0)

    chunk_length = end_idx - start_idx
    pred = pred[:round(chunk_length*params['autoencoder']['sr'])]

    output_audio[round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])] = pred

    pred = output_audio

    return params['autoencoder']['sr'], pred


# Examples (if needed for the demo)
examples = [
    "a dog barking in the distance",
    "light guitar music is playing",
    "a duck quacks as waves crash gently on the shore",
    "footsteps crunch on the forest floor as crickets chirp",
    "a horse clip-clops in a windy rain as thunder cracks in the distance",
]

# Examples (if needed for the demo)
examples_edit = [
    ["a dog barking in the background", 2, 3],
    ["kids playing and laughing nearby", 5, 4],
    ["rock music playing on the street", 8, 6]
]


# CSS styling (optional)
css = """
#col-container {
    margin: 0 auto;
    max-width: 1280px;
}
"""

# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
            # EzAudio: High-quality Text-to-Audio Generator
            Generate and edit audio from text using a diffusion transformer. Adjust advanced settings for more control.
        
            [Learn more about 😈EzAudio](https://haidog-yaqub.github.io/EzAudio-Page/)
        """)


        # Tabs for Generate and Edit
        with gr.Tab("Audio Generation"):
            # Basic Input: Text prompt
            with gr.Row():
                text_input = gr.Textbox(
                    label="Text Prompt",
                    show_label=True,
                    max_lines=2,
                    placeholder="Enter your prompt",
                    container=True,
                    value="a dog barking in the distance",
                    scale=4
                )
                # Run button
                run_button = gr.Button("Generate", scale=1)

            # Output Component
            result = gr.Audio(label="Generated Audio", type="numpy")

            # Advanced settings in an Accordion
            with gr.Accordion("Advanced Settings", open=False):
                # Audio Length
                audio_length = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
                guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale")
                guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
                ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
                eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
                seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
                randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)

            # Examples block
            gr.Examples(
                examples=examples,
                inputs=[text_input]
            )

            # Define the trigger and input-output linking for generation
            run_button.click(
                fn=generate_audio,
                inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
                outputs=[result]
            )
            text_input.submit(fn=generate_audio,
                inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
                outputs=[result]
            )

        with gr.Tab("Audio Editing and Inpainting"):
            # Input: Upload audio file
            with gr.Row():
                gt_file_input = gr.Audio(label="Upload Audio to Edit", type="filepath", value="edit_example.wav")

            # Text prompt for editing
            text_edit_input = gr.Textbox(
                label="Edit Prompt",
                show_label=True,
                max_lines=2,
                placeholder="Describe the edit you wat",
                container=True,
                value="a dog barking in the background",
                scale=4
            )

            # Mask settings
            mask_start = gr.Number(label="Edit Start (seconds)", value=2.0)
            mask_length = gr.Slider(minimum=0.5, maximum=10, step=0.5, value=3, label="Edit Length (seconds)")
            
            edit_explanation = gr.Markdown(value="**Edit Start**: The time when the edit begins. \n\n**Edit Length**: The duration of the segment to be edited. \n\n**Outpainting**: If the edit extends beyond the audio's length, Outpainting Mode will automatically activate.")

            # Run button for editing
            edit_button = gr.Button("Generate", scale=1)

            # Output Component for edited audio
            edited_result = gr.Audio(label="Edited Audio", type="numpy")

            # Advanced settings in an Accordion
            with gr.Accordion("Advanced Settings", open=False):
                # Audio Length (optional for editing, can be auto or user-defined)
                edit_boundary = gr.Slider(minimum=0.5, maximum=4, step=0.5, value=2, label="Edit Boundary (in seconds)")
                edit_guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.5, value=3.0, label="Guidance Scale")
                edit_guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.0, label="Guidance Rescale")
                edit_ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
                edit_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
                edit_seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
                edit_randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)

            # Examples block
            gr.Examples(
                examples=examples_edit,
                inputs=[text_edit_input, mask_start, mask_length]
            )

            # Define the trigger and input-output linking for editing
            edit_button.click(
                fn=editing_audio,
                inputs=[
                    text_edit_input,
                    edit_boundary,
                    gt_file_input,
                    mask_start,
                    mask_length,
                    edit_guidance_scale,
                    edit_guidance_rescale,
                    edit_ddim_steps,
                    edit_eta,
                    edit_seed,
                    edit_randomize_seed
                ],
                outputs=[edited_result]
            )
            text_edit_input.submit(
                fn=editing_audio,
                inputs=[
                    text_edit_input,
                    edit_boundary,
                    gt_file_input,
                    mask_start,
                    mask_length,
                    edit_guidance_scale,
                    edit_guidance_rescale,
                    edit_ddim_steps,
                    edit_eta,
                    edit_seed,
                    edit_randomize_seed
                ],
                outputs=[edited_result]
            )

    # Launch the Gradio demo
    demo.launch()