Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,507 Bytes
d9a7330 f2bd5dc 7a3d4fd eb39bd3 d9a7330 c90e89d d9a7330 eb39bd3 d9a7330 eb39bd3 d9a7330 eb39bd3 d9a7330 f2bd5dc d9a7330 eb39bd3 d9a7330 f2bd5dc d9a7330 f2bd5dc d9a7330 f2bd5dc 5d104f9 f2bd5dc 5d104f9 f2bd5dc 8dccda8 f2bd5dc 5d104f9 eb39bd3 f2bd5dc 5d104f9 f2bd5dc 8dccda8 f2bd5dc c69a5d4 f2bd5dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import os
import torch
import random
import numpy as np
import gradio as gr
import librosa
import spaces
from accelerate import Accelerator
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import DDIMScheduler
from src.models.conditioners import MaskDiT
from src.modules.autoencoder_wrapper import Autoencoder
from src.inference import inference
from src.utils import load_yaml_with_includes
# Load model and configs
def load_models(config_name, ckpt_path, vae_path, device):
params = load_yaml_with_includes(config_name)
# Load codec model
autoencoder = Autoencoder(ckpt_path=vae_path,
model_type=params['autoencoder']['name'],
quantization_first=params['autoencoder']['q_first']).to(device)
autoencoder.eval()
# Load text encoder
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
text_encoder.eval()
# Load main U-Net model
unet = MaskDiT(**params['model']).to(device)
unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model'])
unet.eval()
accelerator = Accelerator(mixed_precision="fp16")
unet = accelerator.prepare(unet)
# Load noise scheduler
noise_scheduler = DDIMScheduler(**params['diff'])
latents = torch.randn((1, 128, 128), device=device)
noise = torch.randn_like(latents)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
_ = noise_scheduler.add_noise(latents, noise, timesteps)
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params
MAX_SEED = np.iinfo(np.int32).max
# Model and config paths
config_name = 'ckpts/ezaudio-xl.yml'
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
vae_path = 'ckpts/vae/1m.pt'
# save_path = 'output/'
# os.makedirs(save_path, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
device)
@spaces.GPU
def generate_audio(text, length,
guidance_scale, guidance_rescale, ddim_steps, eta,
random_seed, randomize_seed):
neg_text = None
length = length * params['autoencoder']['latent_sr']
gt, gt_mask = None, None
if text == '':
guidance_scale = None
print('empyt input')
if randomize_seed:
random_seed = random.randint(0, MAX_SEED)
pred = inference(autoencoder, unet,
gt, gt_mask,
tokenizer, text_encoder,
params, noise_scheduler,
text, neg_text,
length,
guidance_scale, guidance_rescale,
ddim_steps, eta, random_seed,
device)
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
# output_file = f"{save_path}/{text}.wav"
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr'])
return params['autoencoder']['sr'], pred
@spaces.GPU
def editing_audio(text, boundary,
gt_file, mask_start, mask_length,
guidance_scale, guidance_rescale, ddim_steps, eta,
random_seed, randomize_seed):
neg_text = None
max_length = 10
if text == '':
guidance_scale = None
print('empyt input')
mask_end = mask_start + mask_length
# Load and preprocess ground truth audio
gt, sr = librosa.load(gt_file, sr=params['autoencoder']['sr'])
gt = gt / (np.max(np.abs(gt)) + 1e-9)
audio_length = len(gt) / sr
mask_start = min(mask_start, audio_length)
if mask_end > audio_length:
# outpadding mode
padding = round((mask_end - audio_length)*params['autoencoder']['sr'])
gt = np.pad(gt, (0, padding), 'constant')
audio_length = len(gt) / sr
output_audio = gt.copy()
gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
boundary = min((max_length - (mask_end - mask_start))/2, (mask_end - mask_start)/2, boundary)
# print(boundary)
# Calculate start and end indices
start_idx = max(mask_start - boundary, 0)
end_idx = min(mask_end + boundary, audio_length)
# print(start_idx)
# print(end_idx)
mask_start -= start_idx
mask_end -= start_idx
gt = gt[:, :, round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])]
# Encode the audio to latent space
gt_latent = autoencoder(audio=gt)
B, D, L = gt_latent.shape
length = L
gt_mask = torch.zeros(B, D, L).to(device)
latent_sr = params['autoencoder']['latent_sr']
gt_mask[:, :, round(mask_start * latent_sr): round(mask_end * latent_sr)] = 1
gt_mask = gt_mask.bool()
if randomize_seed:
random_seed = random.randint(0, MAX_SEED)
# Perform inference to get the edited latent representation
pred = inference(autoencoder, unet,
gt_latent, gt_mask,
tokenizer, text_encoder,
params, noise_scheduler,
text, neg_text,
length,
guidance_scale, guidance_rescale,
ddim_steps, eta, random_seed,
device)
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
chunk_length = end_idx - start_idx
pred = pred[:round(chunk_length*params['autoencoder']['sr'])]
output_audio[round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])] = pred
pred = output_audio
return params['autoencoder']['sr'], pred
# Examples (if needed for the demo)
examples = [
"a dog barking in the distance",
"the sound of rain falling softly",
"light guitar music is playing",
]
# Examples (if needed for the demo)
examples_edit = [
["a dog barking in the background", 2, 3],
["kids playing and laughing nearby", 5, 4],
["rock music playing on the street", 8, 6]
]
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# EzAudio: High-quality Text-to-Audio Generator
Generate and edit audio from text using a diffusion transformer. Adjust advanced settings for more control.
""")
# Tabs for Generate and Edit
with gr.Tab("Audio Generation"):
# Basic Input: Text prompt
with gr.Row():
text_input = gr.Textbox(
label="Text Prompt",
show_label=True,
max_lines=2,
placeholder="Enter your prompt",
container=True,
value="a dog barking in the distance",
scale=4
)
# Run button
run_button = gr.Button("Generate", scale=1)
# Output Component
result = gr.Audio(label="Generate", type="numpy")
# Advanced settings in an Accordion
with gr.Accordion("Advanced Settings", open=False):
# Audio Length
audio_length = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale")
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)
# Examples block
gr.Examples(
examples=examples,
inputs=[text_input]
)
# Define the trigger and input-output linking for generation
run_button.click(
fn=generate_audio,
inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
outputs=[result]
)
text_input.submit(fn=generate_audio,
inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
outputs=[result]
)
with gr.Tab("Audio Editing and Inpainting"):
# Input: Upload audio file
with gr.Row():
gt_file_input = gr.Audio(label="Upload Audio to Edit", type="filepath", value="edit_example.wav")
# Text prompt for editing
text_edit_input = gr.Textbox(
label="Edit Prompt",
show_label=True,
max_lines=2,
placeholder="Describe the edit you wat",
container=True,
value="a dog barking in the background",
scale=4
)
# Mask settings
mask_start = gr.Number(label="Edit Start (seconds)", value=2.0)
mask_length = gr.Slider(minimum=0.5, maximum=10, step=0.5, value=3, label="Edit Length (seconds)")
edit_explanation = gr.Markdown(value="**Edit Start**: The time when the edit begins. \n\n**Edit Length**: The duration of the segment to be edited. \n\n**Outpainting**: If the edit extends beyond the audio's length, Outpainting Mode will automatically activate.")
# Run button for editing
edit_button = gr.Button("Generate", scale=1)
# Output Component for edited audio
edited_result = gr.Audio(label="Edited Audio", type="numpy")
# Advanced settings in an Accordion
with gr.Accordion("Advanced Settings", open=False):
# Audio Length (optional for editing, can be auto or user-defined)
edit_boundary = gr.Slider(minimum=0.5, maximum=4, step=0.5, value=2, label="Edit Boundary (in seconds)")
edit_guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.5, value=5.0, label="Guidance Scale")
edit_guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
edit_ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
edit_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
edit_seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
edit_randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)
# Examples block
gr.Examples(
examples=examples_edit,
inputs=[text_edit_input, mask_start, mask_length]
)
# Define the trigger and input-output linking for editing
edit_button.click(
fn=editing_audio,
inputs=[
text_edit_input,
edit_boundary,
gt_file_input,
mask_start,
mask_length,
edit_guidance_scale,
edit_guidance_rescale,
edit_ddim_steps,
edit_eta,
edit_seed,
edit_randomize_seed
],
outputs=[edited_result]
)
text_edit_input.submit(
fn=editing_audio,
inputs=[
text_edit_input,
edit_boundary,
gt_file_input,
mask_start,
mask_length,
edit_guidance_scale,
edit_guidance_rescale,
edit_ddim_steps,
edit_eta,
edit_seed,
edit_randomize_seed
],
outputs=[edited_result]
)
# Launch the Gradio demo
demo.launch()
|