Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,264 Bytes
d9a7330 5d104f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
import torch
import random
import spaces
import numpy as np
import gradio as gr
import soundfile as sf
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import DDIMScheduler
from src.models.conditioners import MaskDiT
from src.modules.autoencoder_wrapper import Autoencoder
from src.inference import inference
from src.utils import load_yaml_with_includes
# Load model and configs
def load_models(config_name, ckpt_path, vae_path, device):
params = load_yaml_with_includes(config_name)
# Load codec model
autoencoder = Autoencoder(ckpt_path=vae_path,
model_type=params['autoencoder']['name'],
quantization_first=params['autoencoder']['q_first']).to(device)
autoencoder.eval()
# Load text encoder
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
text_encoder.eval()
# Load main U-Net model
unet = MaskDiT(**params['model']).to(device)
unet.load_state_dict(torch.load(ckpt_path)['model'])
unet.eval()
# Load noise scheduler
noise_scheduler = DDIMScheduler(**params['diff'])
latents = torch.randn((1, 128, 128), device=device)
noise = torch.randn_like(latents)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
_ = noise_scheduler.add_noise(latents, noise, timesteps)
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params
MAX_SEED = np.iinfo(np.int32).max
# Model and config paths
config_name = 'ckpts/ezaudio-xl.yml'
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
vae_path = 'ckpts/vae/1m.pt'
save_path = 'output/'
os.makedirs(save_path, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
device)
@spaces.GPU
def generate_audio(text, length,
guidance_scale, guidance_rescale, ddim_steps, eta,
random_seed, randomize_seed):
neg_text = None
length = length * params['autoencoder']['latent_sr']
if randomize_seed:
random_seed = random.randint(0, MAX_SEED)
pred = inference(autoencoder, unet, None, None,
tokenizer, text_encoder,
params, noise_scheduler,
text, neg_text,
length,
guidance_scale, guidance_rescale,
ddim_steps, eta, random_seed,
device)
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
# output_file = f"{save_path}/{text}.wav"
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr'])
return params['autoencoder']['sr'], pred
# Examples (if needed for the demo)
examples = [
"the sound of rain falling softly",
"a dog barking in the distance",
"light guitar music is playing",
]
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# EzAudio Text-to-Audio Generator
Generate audio from text using a diffusion transformer. Adjust advanced settings for more control.
""")
# Basic Input: Text prompt and Audio Length
with gr.Row():
text_input = gr.Textbox(
label="Text Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
value="a dog barking in the distance"
)
length_input = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
# Output Component
result = gr.Audio(label="Result", type="numpy")
# Advanced settings in an Accordion
with gr.Accordion("Advanced Settings", open=False):
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale")
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=100, label="DDIM Steps")
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
# Examples block
gr.Examples(
examples=examples,
inputs=[text_input]
)
# Run button
run_button = gr.Button("Generate")
# Define the trigger and input-output linking
run_button.click(
fn=generate_audio,
inputs=[text_input, length_input, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
outputs=[result]
)
# Launch the Gradio demo
demo.launch() |