Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2023, Tri Dao. | |
import math | |
import torch | |
import pytest | |
from einops import rearrange | |
from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_ref | |
from causal_conv1d.causal_conv1d_interface import causal_conv1d_update, causal_conv1d_update_ref | |
# @pytest.mark.parametrize('channel_last', [True]) | |
# @pytest.mark.parametrize('itype', [torch.float16]) | |
# @pytest.mark.parametrize('silu_activation', [True]) | |
# @pytest.mark.parametrize('has_bias', [True]) | |
# @pytest.mark.parametrize('width', [2]) | |
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096]) | |
# @pytest.mark.parametrize('seqlen', [128]) | |
def test_causal_conv1d(seqlen, width, has_bias, silu_activation, itype, channel_last): | |
device = "cuda" | |
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) | |
if itype == torch.bfloat16: | |
rtol, atol = 1e-2, 5e-2 | |
rtolw, atolw = (1e-3, 1e-3) | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 2 | |
# batch_size = 1 | |
dim = 4096 + 32 # Try dim not divisible by 64 | |
# dim = 64 | |
if not channel_last: | |
x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_() | |
else: | |
x = rearrange( | |
torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s" | |
).requires_grad_() | |
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True) | |
if has_bias: | |
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True) | |
else: | |
bias = None | |
x_ref = x.detach().clone().requires_grad_() | |
weight_ref = weight.detach().clone().requires_grad_() | |
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None | |
activation = None if not silu_activation else "silu" | |
out = causal_conv1d_fn(x, weight, bias, activation=activation) | |
out_ref = causal_conv1d_ref(x_ref, weight_ref, bias_ref, activation=activation) | |
print(f"Output max diff: {(out - out_ref).abs().max().item()}") | |
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") | |
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol) | |
g = torch.randn_like(out) | |
out_ref.backward(g) | |
out.backward(g) | |
print(f"dx max diff: {(x.grad - x_ref.grad).abs().max().item()}") | |
print(f"dweight max diff: {(weight.grad - weight_ref.grad).abs().max().item()}") | |
if has_bias: | |
print(f"dbias max diff: {(bias.grad - bias_ref.grad).abs().max().item()}") | |
assert torch.allclose(x.grad, x_ref.grad.to(dtype=itype), rtol=rtol, atol=atol) | |
assert torch.allclose(weight.grad, weight_ref.grad, rtol=rtolw, atol=atolw) | |
if has_bias: | |
assert torch.allclose(bias.grad, bias_ref.grad, rtol=rtolw, atol=atolw) | |
# @pytest.mark.parametrize('itype', [torch.float16]) | |
# @pytest.mark.parametrize('silu_activation', [False]) | |
# @pytest.mark.parametrize('has_bias', [True]) | |
# @pytest.mark.parametrize('width', [2]) | |
# @pytest.mark.parametrize("dim", [2048]) | |
def test_causal_conv1d_update(dim, width, has_bias, silu_activation, itype): | |
device = "cuda" | |
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) | |
if itype == torch.bfloat16: | |
rtol, atol = 1e-2, 5e-2 | |
rtolw, atolw = (1e-3, 1e-3) | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 2 | |
# batch_size = 1 | |
# dim = 64 | |
x = torch.randn(batch_size, dim, device=device, dtype=itype) | |
conv_state = torch.randn(batch_size, dim, width, device=device, dtype=itype) | |
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True) | |
if has_bias: | |
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True) | |
else: | |
bias = None | |
conv_state_ref = conv_state.detach().clone() | |
activation = None if not silu_activation else "silu" | |
out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation) | |
out_ref = causal_conv1d_update_ref(x, conv_state_ref, weight, bias, activation=activation) | |
print(f"Output max diff: {(out - out_ref).abs().max().item()}") | |
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") | |
assert torch.equal(conv_state, conv_state_ref) | |
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol) | |
# @pytest.mark.parametrize("channel_last", [False, True]) | |
# @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16]) | |
# @pytest.mark.parametrize("silu_activation", [False, True]) | |
# @pytest.mark.parametrize("has_bias", [False, True]) | |
# @pytest.mark.parametrize("width", [2, 3, 4]) | |
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096]) | |
# @pytest.mark.parametrize('seqlen', [128]) | |
def test_causal_conv1d_race_condition(seqlen, width, has_bias, silu_activation, itype, channel_last): | |
device = "cuda" | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 2 | |
# batch_size = 1 | |
dim = 4096 + 32 # Try dim not divisible by 64 | |
# dim = 64 | |
if not channel_last: | |
x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_() | |
else: | |
x = rearrange( | |
torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s" | |
).requires_grad_() | |
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True) | |
if has_bias: | |
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True) | |
else: | |
bias = None | |
activation = None if not silu_activation else "silu" | |
out0 = causal_conv1d_fn(x, weight, bias, activation=activation) | |
g = torch.randn_like(out0) | |
dx0, dw0, db0 = torch.autograd.grad(out0, (x, weight, bias), g) | |
dw_atol = 1e-4 | |
db_atol = 1e-4 | |
for i in range(10000): | |
out = causal_conv1d_fn(x, weight, bias, activation=activation) | |
dx, dw, db = torch.autograd.grad(out, (x, weight, bias), g) | |
dw_equal = torch.allclose(dw, dw0, atol=dw_atol) | |
# if not dw_equal: | |
# breakpoint() | |
if has_bias: | |
db_equal = torch.allclose(db, db0, atol=db_atol) | |
# if not db_equal: | |
# breakpoint() | |
assert torch.equal(out, out0) | |
assert torch.equal(dx, dx0) | |
assert dw_equal | |
if has_bias: | |
assert dw_equal | |