Spaces:
Runtime error
Runtime error
File size: 9,928 Bytes
6cc79fe 5f14294 6cc79fe 268fcce 6cc79fe c0feb54 6cc79fe 268fcce c7fea59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import torch
import gradio as gr
from gradio.themes.utils import colors, fonts, sizes
from conversation import Chat
# videochat
from utils.config import Config
from utils.easydict import EasyDict
from models.videochat import VideoChat
# ========================================
# Model Initialization
# ========================================
def init_model():
print('Initializing VideoChat')
config_file = "configs/config.json"
cfg = Config.from_file(config_file)
model = VideoChat(config=cfg.model)
model = model.to(torch.device(cfg.device))
model = model.eval()
chat = Chat(model)
print('Initialization Finished')
return chat
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_img(gr_img, gr_video, chat_state, num_segments):
# print(gr_img, gr_video)
chat_state = EasyDict({
"system": "",
"roles": ("Human", "Assistant"),
"messages": [],
"sep": "###"
})
img_list = []
if gr_img is None and gr_video is None:
return None, None, gr.update(interactive=True), chat_state, None
if gr_video:
llm_message, img_list, chat_state = chat.upload_video(gr_video, chat_state, img_list, num_segments)
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
if gr_img:
llm_message, img_list,chat_state = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
#print(chat_state)
chat_state = chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(gr_img, gr_video,chatbot, chat_state, img_list, num_beams, temperature):
llm_message,llm_message_token, chat_state = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=1000, num_beams=num_beams, temperature=temperature)
llm_message = llm_message.replace("<s>", "") # handle <s>
chatbot[-1][1] = llm_message
print(f"========{gr_img}##<BOS>##{gr_video}========")
print(chat_state,flush=True)
print(f"========{gr_img}##<END>##{gr_video}========")
# print(f"Answer: {llm_message}")
return chatbot, chat_state, img_list
class OpenGVLab(gr.themes.base.Base):
def __init__(
self,
*,
primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
font=(
fonts.GoogleFont("Noto Sans"),
"ui-sans-serif",
"sans-serif",
),
font_mono=(
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="*neutral_50",
)
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
)
title = """<h1 align="center"><a href="https://github.com/OpenGVLab/Ask-Anything"><img src="https://i.328888.xyz/2023/05/11/iqrAkZ.md.png" alt="Ask-Anything" border="0" style="margin: 0 auto; height: 100px;" /></a> </h1>"""
description ="""
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/OpenGVLab/VideoChatGPT?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></ a>
Due to the limited GPU vRAM, here is the Video Chat-7B-8BIT. You can duplicate and use it with a paid private GPU. Alternatively, you can also use the demo on our [project page](https://vchat.opengvlab.com) with vchat-13B.
<p> VideoChat, an end-to-end chat-centric video understanding system powered by <a href='https://github.com/OpenGVLab/InternVideo'>InternVideo</a>. It integrates video foundation models and large language models via a learnable neural interface, excelling in spatiotemporal reasoning, event localization, and causal relationship inference.</p>
<div style='display:flex; gap: 0.25rem; '>
<a src="https://img.shields.io/badge/Github-Code-blue?logo=github" href="https://github.com/OpenGVLab/Ask-Anything"> <img src="https://img.shields.io/badge/Github-Code-blue?logo=github">
<a src="https://img.shields.io/badge/cs.CV-2305.06355-b31b1b?logo=arxiv&logoColor=red" href="https://arxiv.org/abs/2305.06355"> <img src="https://img.shields.io/badge/cs.CV-2305.06355-b31b1b?logo=arxiv&logoColor=red">
<a src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat" href="https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/papers/media/wechat_group.jpg"> <img src="https://img.shields.io/badge/WeChat-Group-green?logo=wechat">
<a src="https://img.shields.io/discord/1099920215724277770?label=Discord&logo=discord" href="https://discord.gg/A2Ex6Pph6A"> <img src="https://img.shields.io/discord/1099920215724277770?label=Discord&logo=discord"> </div>
"""
with gr.Blocks(title="InternVideo-VideoChat!",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=0.5, visible=True) as video_upload:
with gr.Column(elem_id="image") as img_part:
with gr.Tab("Video", elem_id='video_tab'):
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload")#.style(height=320)
with gr.Tab("Image", elem_id='image_tab'):
up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload")#.style(height=320)
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
num_segments = gr.Slider(
minimum=8,
maximum=64,
value=8,
step=1,
interactive=True,
label="Video Segments",
)
with gr.Column(visible=True) as input_raws:
chat_state = gr.State(EasyDict({
"system": "",
"roles": ("Human", "Assistant"),
"messages": [],
"sep": "###"
}))
img_list = gr.State()
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
with gr.Row():
with gr.Column(scale=0.7):
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False)#.style(container=False)
with gr.Column(scale=0.15, min_width=0):
run = gr.Button("πSend")
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("πClearοΈ")
chat = init_model()
upload_button.click(upload_img, [up_image, up_video, chat_state, num_segments], [up_image, up_video, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [up_image, up_video, chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
run.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [up_image, up_video,chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
run.click(lambda: "", None, text_input)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, up_image, up_video, text_input, upload_button, chat_state, img_list], queue=False)
#demo.launch(server_name="0.0.0.0", favicon_path='bot_avatar.jpg', enable_queue=True,ssl_keyfile="vchat_cert/privkey1.pem",ssl_certfile="vchat_cert/cert1.pem",ssl_verify=False)
demo.launch(server_name="0.0.0.0") |