Spaces:
Runtime error
Runtime error
File size: 7,210 Bytes
6cc79fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import random
import logging
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
from .blip2 import Blip2Base, disabled_train
from .modeling_llama import LlamaForCausalLM
from transformers import LlamaTokenizer, LlamaConfig
class VideoChat(Blip2Base):
"""
VideoChat model.
"""
def __init__(self, config):
super().__init__()
vit_model = config.get("vit_model", "eva_clip_g")
vit_model_path = config.get("vit_model_path", None)
q_former_model_path = config.get("q_former_model_path", None)
llama_model_path = config.get("llama_model_path")
videochat_model_path = config.get("videochat_model_path", "")
img_size = config.get("img_size")
drop_path_rate = config.get("drop_path_rate", 0)
use_grad_checkpoint = config.get("use_grad_checkpoint", False)
vit_precision = config.get("vit_precision", "fp16")
freeze_vit = config.get("freeze_vit", True)
freeze_qformer = config.get("freeze_qformer", True)
low_resource = config.get("low_resource", False) # use 8 bit and put vit in cpu
max_txt_len = config.get("max_txt_len", 32)
# uniformerv2
freeze_mhra = config.get("freeze_mhra", False)
temporal_downsample = config.get("temporal_downsample", True)
no_lmhra = config.get("no_lmhra", False)
double_lmhra = config.get("double_lmhra", False)
lmhra_reduction = config.get("lmhra_reduction", 2.0)
gmhra_layers = config.get("gmhra_layers", 8)
gmhra_drop_path_rate = config.get("gmhra_drop_path_rate", 0.)
gmhra_dropout = config.get("gmhra_dropout", 0.5)
# qformer
num_query_token = config.get("num_query_token")
extra_num_query_token = config.get("extra_num_query_token", 64)
self.tokenizer = self.init_tokenizer()
self.low_resource = low_resource
self.vit_precision = vit_precision
print(f'Loading VIT. Use fp16: {vit_precision}')
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate,
use_grad_checkpoint, vit_precision, vit_model_path,
temporal_downsample=temporal_downsample,
no_lmhra=no_lmhra,
double_lmhra=double_lmhra,
lmhra_reduction=lmhra_reduction,
gmhra_layers=gmhra_layers,
gmhra_drop_path_rate=gmhra_drop_path_rate,
gmhra_dropout=gmhra_dropout,
)
if freeze_vit:
print("freeze vision encoder")
if not freeze_mhra:
open_list = []
for name, param in self.visual_encoder.named_parameters():
if 'mhra' not in name:
param.requires_grad = False
else:
open_list.append(name)
print(f"open module: {open_list}")
print("open ln_vision")
else:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
print('Loading VIT Done')
print('Loading Q-Former')
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features,
)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.load_from_pretrained(model_path=q_former_model_path)
print(f"Add extra {extra_num_query_token} tokens in QFormer")
self.extra_query_tokens = nn.Parameter(
torch.zeros(1, extra_num_query_token, self.query_tokens.shape[-1])
)
if freeze_qformer:
print("freeze Qformer")
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.Qformer = self.Qformer.eval()
self.Qformer.train = disabled_train
self.query_tokens.requires_grad = False
print('Loading Q-Former Done')
print('Loading LLAMA')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
if self.low_resource:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model_path,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map="auto"
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model_path,
torch_dtype=torch.float16,
)
print("freeze LLAMA")
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
print('Loading LLAMA Done')
self.llama_proj = nn.Linear(
self.Qformer.config.hidden_size, self.llama_model.config.hidden_size
)
self.max_txt_len = max_txt_len
# load weights of VideoChat
if videochat_model_path:
print(f"Load VideoChat from: {videochat_model_path}")
ckpt = torch.load(videochat_model_path, map_location="cpu")
msg = self.load_state_dict(ckpt['model'], strict=False)
print(msg)
def vit_to_cpu(self):
self.ln_vision.to("cpu")
self.ln_vision.float()
self.visual_encoder.to("cpu")
self.visual_encoder.float()
def encode_img(self, image):
device = image.device
if self.low_resource:
self.vit_to_cpu()
image = image.to("cpu")
with self.maybe_autocast():
T = image.shape[1]
# use_image = True if T == 1 else False
image = image.permute(0, 2, 1, 3, 4) # [B,T,C,H,W] -> [B,C,T,H,W]
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1)
query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llama = self.llama_proj(query_output.last_hidden_state)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
|