File size: 7,447 Bytes
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from PIL import Image

import torch
from transformers import StoppingCriteria, StoppingCriteriaList

from enum import auto, Enum

import numpy as np
from decord import VideoReader, cpu
import torchvision.transforms as T
from models.video_transformers import (
    GroupNormalize, GroupScale, GroupCenterCrop, 
    Stack, ToTorchFormatTensor
)
from torchvision.transforms.functional import InterpolationMode
from transformers import LlamaTokenizer, LlamaConfig

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()


def get_prompt(conv):
    ret = conv.system + conv.sep
    for role, message in conv.messages:
        if message:
            ret += role + ": " + message + conv.sep
        else:
            ret += role + ":"
    return ret


class StoppingCriteriaSub(StoppingCriteria):
    def __init__(self, stops=[], encounters=1):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop):])).item():
                return True
        return False


class Chat:
    def __init__(self, model, device='cuda:0'):
        self.device = device
        self.model = model
        stop_words_ids = [torch.tensor([835]).to(self.device),
                          torch.tensor([2277, 29937]).to(self.device)]  # '###' can be encoded in two different ways.
        self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

    def ask(self,text,conv):
        conv.messages.append([conv.roles[0], text + '\n'])
        return conv

    def answer(self, conv,  img_list, max_new_tokens=200, num_beams=1, min_length=1, top_p=0.9,
               repetition_penalty=1.0, length_penalty=1, temperature=1.0):
        conv.messages.append([conv.roles[1], None])
        embs = self.get_context_emb(conv, img_list)
        outputs = self.model.llama_model.generate(
            inputs_embeds=embs,
            max_new_tokens=max_new_tokens,
            stopping_criteria=self.stopping_criteria,
            num_beams=num_beams,
            do_sample=True,
            min_length=min_length,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            temperature=temperature,
        )
        output_token = outputs[0]
        if output_token[0] == 0:  # the model might output a unknow token <unk> at the beginning. remove it
                output_token = output_token[1:]
        if output_token[0] == 1:  # some users find that there is a start token <s> at the beginning. remove it
                output_token = output_token[1:]
        output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
        output_text = output_text.split('###')[0]  # remove the stop sign '###'
        output_text = output_text.split('Assistant:')[-1].strip()
        conv.messages[-1][1] = output_text
        return output_text, output_token.cpu().numpy(), conv
        
    def get_index(self, num_frames, num_segments):
        seg_size = float(num_frames - 1) / num_segments
        start = int(seg_size / 2)
        offsets = np.array([
            start + int(np.round(seg_size * idx)) for idx in range(num_segments)
        ])
        return offsets

    def load_video(self, video_path, num_segments=8, return_msg=False):
        vr = VideoReader(video_path, ctx=cpu(0))
        num_frames = len(vr)
        frame_indices = self.get_index(num_frames, num_segments)
        
        duration = len(vr) // vr.get_avg_fps()
        index = np.linspace(0, len(vr)-1, num=int(duration))
        buffer = vr.get_batch(index).asnumpy()
        # transform
        input_mean = [0.48145466, 0.4578275, 0.40821073]
        input_std = [0.26862954, 0.26130258, 0.27577711]
        
        transform = T.Compose([
            GroupScale(int(224), interpolation=InterpolationMode.BICUBIC),
            GroupCenterCrop(224),
            Stack(),
            ToTorchFormatTensor(),
            GroupNormalize(input_mean, input_std) 
        ])

        images_group = list()
        for frame in buffer:
            img = Image.fromarray(frame)
            images_group.append(img)
        images_group = list()
        for frame_index in frame_indices:
            img = Image.fromarray(vr[frame_index].asnumpy())
            images_group.append(img)
        torch_imgs_224 = transform(images_group)
        if return_msg:
            fps = float(vr.get_avg_fps())
            sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
            # " " should be added in the start and end
            msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
            return torch_imgs_224, msg
        else:
            return torch_imgs_224

    def upload_video(self, image, conv, img_list, num_segments):
        if isinstance(image, str):  # is a image path
            vid_chat, msg = self.load_video(image, num_segments=num_segments, return_msg=True)
            TC, H, W = vid_chat.shape
            image = vid_chat.reshape(1, TC//3, 3, H, W).to(self.device)

        else:
            raise NotImplementedError
        print("Input video shape:", vid_chat.shape)
        image_emb, _ = self.model.encode_img(image)
        img_list.append(image_emb)
        conv.messages.append([
            conv.roles[0], 
            f"<Video><VideoHere></Video> {msg}\n"
        ])
        msg = "Received."
        # self.conv.append_message(self.conv.roles[1], msg)
        return msg, img_list, conv
    
    def upload_img(self, image, conv, img_list):
        img = image#Image.open(image)#.convert('RGB')
        transform = T.Compose(
            [
                T.Resize(
                    (224, 224), interpolation=InterpolationMode.BICUBIC
                ),
                T.ToTensor(),
                T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
            ]
        )

        img = transform(img).unsqueeze(0).unsqueeze(0).cuda()
        image_emb, _ = self.model.encode_img(img)
        img_list.append(image_emb)
        conv.messages.append([
            conv.roles[0],
            f"<Image><ImageHere></Image>\n"
        ])
        msg = "Received."
        # self.conv.append_message(self.conv.roles[1], msg)
        return msg,img_list, conv

    def get_context_emb(self, conv, img_list):
        prompt = get_prompt(conv)
        #print(prompt)
        if '<VideoHere>' in prompt:
            prompt_segs = prompt.split('<VideoHere>')
        else:
            prompt_segs = prompt.split('<ImageHere>')
        assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of visual placeholders and videos."
        seg_tokens = [
            self.model.llama_tokenizer(
                seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
            # only add bos to the first seg
            for i, seg in enumerate(prompt_segs)
        ]
        seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
        mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
        mixed_embs = torch.cat(mixed_embs, dim=1)
        return mixed_embs