Spaces:
Runtime error
Runtime error
File size: 7,447 Bytes
6cc79fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from PIL import Image
import torch
from transformers import StoppingCriteria, StoppingCriteriaList
from enum import auto, Enum
import numpy as np
from decord import VideoReader, cpu
import torchvision.transforms as T
from models.video_transformers import (
GroupNormalize, GroupScale, GroupCenterCrop,
Stack, ToTorchFormatTensor
)
from torchvision.transforms.functional import InterpolationMode
from transformers import LlamaTokenizer, LlamaConfig
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
def get_prompt(conv):
ret = conv.system + conv.sep
for role, message in conv.messages:
if message:
ret += role + ": " + message + conv.sep
else:
ret += role + ":"
return ret
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
class Chat:
def __init__(self, model, device='cuda:0'):
self.device = device
self.model = model
stop_words_ids = [torch.tensor([835]).to(self.device),
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
def ask(self,text,conv):
conv.messages.append([conv.roles[0], text + '\n'])
return conv
def answer(self, conv, img_list, max_new_tokens=200, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0):
conv.messages.append([conv.roles[1], None])
embs = self.get_context_emb(conv, img_list)
outputs = self.model.llama_model.generate(
inputs_embeds=embs,
max_new_tokens=max_new_tokens,
stopping_criteria=self.stopping_criteria,
num_beams=num_beams,
do_sample=True,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
output_token = outputs[0]
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
output_token = output_token[1:]
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
output_text = output_text.split('###')[0] # remove the stop sign '###'
output_text = output_text.split('Assistant:')[-1].strip()
conv.messages[-1][1] = output_text
return output_text, output_token.cpu().numpy(), conv
def get_index(self, num_frames, num_segments):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def load_video(self, video_path, num_segments=8, return_msg=False):
vr = VideoReader(video_path, ctx=cpu(0))
num_frames = len(vr)
frame_indices = self.get_index(num_frames, num_segments)
duration = len(vr) // vr.get_avg_fps()
index = np.linspace(0, len(vr)-1, num=int(duration))
buffer = vr.get_batch(index).asnumpy()
# transform
input_mean = [0.48145466, 0.4578275, 0.40821073]
input_std = [0.26862954, 0.26130258, 0.27577711]
transform = T.Compose([
GroupScale(int(224), interpolation=InterpolationMode.BICUBIC),
GroupCenterCrop(224),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(input_mean, input_std)
])
images_group = list()
for frame in buffer:
img = Image.fromarray(frame)
images_group.append(img)
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
torch_imgs_224 = transform(images_group)
if return_msg:
fps = float(vr.get_avg_fps())
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
# " " should be added in the start and end
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
return torch_imgs_224, msg
else:
return torch_imgs_224
def upload_video(self, image, conv, img_list, num_segments):
if isinstance(image, str): # is a image path
vid_chat, msg = self.load_video(image, num_segments=num_segments, return_msg=True)
TC, H, W = vid_chat.shape
image = vid_chat.reshape(1, TC//3, 3, H, W).to(self.device)
else:
raise NotImplementedError
print("Input video shape:", vid_chat.shape)
image_emb, _ = self.model.encode_img(image)
img_list.append(image_emb)
conv.messages.append([
conv.roles[0],
f"<Video><VideoHere></Video> {msg}\n"
])
msg = "Received."
# self.conv.append_message(self.conv.roles[1], msg)
return msg, img_list, conv
def upload_img(self, image, conv, img_list):
img = image#Image.open(image)#.convert('RGB')
transform = T.Compose(
[
T.Resize(
(224, 224), interpolation=InterpolationMode.BICUBIC
),
T.ToTensor(),
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
img = transform(img).unsqueeze(0).unsqueeze(0).cuda()
image_emb, _ = self.model.encode_img(img)
img_list.append(image_emb)
conv.messages.append([
conv.roles[0],
f"<Image><ImageHere></Image>\n"
])
msg = "Received."
# self.conv.append_message(self.conv.roles[1], msg)
return msg,img_list, conv
def get_context_emb(self, conv, img_list):
prompt = get_prompt(conv)
#print(prompt)
if '<VideoHere>' in prompt:
prompt_segs = prompt.split('<VideoHere>')
else:
prompt_segs = prompt.split('<ImageHere>')
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of visual placeholders and videos."
seg_tokens = [
self.model.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
# only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs
|