Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
|
2 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
import json
|
7 |
import tempfile
|
8 |
|
9 |
from constants import *
|
|
|
|
|
|
|
10 |
|
11 |
global data_component, filter_component
|
12 |
|
@@ -29,6 +31,8 @@ def add_new_eval(
|
|
29 |
return "Error! Empty file!"
|
30 |
|
31 |
upload_data=json.loads(input_file)
|
|
|
|
|
32 |
csv_data = pd.read_csv(CSV_DIR)
|
33 |
|
34 |
if LLM_type == 'Other':
|
@@ -66,10 +70,12 @@ def add_new_eval(
|
|
66 |
new_data.append(0)
|
67 |
csv_data.loc[col] = new_data
|
68 |
csv_data = csv_data.to_csv(CSV_DIR, index=False)
|
|
|
69 |
return 0
|
70 |
|
71 |
def get_baseline_df():
|
72 |
-
|
|
|
73 |
df = pd.read_csv(CSV_DIR)
|
74 |
df = df.sort_values(by="Avg", ascending=False)
|
75 |
present_columns = MODEL_INFO + checkbox_group.value
|
@@ -77,6 +83,8 @@ def get_baseline_df():
|
|
77 |
return df
|
78 |
|
79 |
def get_all_df():
|
|
|
|
|
80 |
df = pd.read_csv(CSV_DIR)
|
81 |
df = df.sort_values(by="Avg", ascending=False)
|
82 |
return df
|
@@ -111,9 +119,6 @@ with block:
|
|
111 |
interactive=True,
|
112 |
)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
# 创建数据帧组件
|
117 |
data_component = gr.components.Dataframe(
|
118 |
value=get_baseline_df,
|
119 |
headers=COLUMN_NAMES,
|
@@ -129,6 +134,7 @@ with block:
|
|
129 |
# columns:
|
130 |
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
131 |
present_columns = MODEL_INFO + selected_columns
|
|
|
132 |
updated_data = updated_data[present_columns]
|
133 |
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
|
134 |
updated_headers = present_columns
|
@@ -226,7 +232,6 @@ with block:
|
|
226 |
|
227 |
def refresh_data():
|
228 |
value1 = get_baseline_df()
|
229 |
-
|
230 |
return value1
|
231 |
|
232 |
with gr.Row():
|
|
|
|
|
1 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
|
2 |
+
import os
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import json
|
6 |
import tempfile
|
7 |
|
8 |
from constants import *
|
9 |
+
from huggingface_hub import Repository
|
10 |
+
|
11 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
12 |
|
13 |
global data_component, filter_component
|
14 |
|
|
|
31 |
return "Error! Empty file!"
|
32 |
|
33 |
upload_data=json.loads(input_file)
|
34 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
35 |
+
submission_repo.git_pull()
|
36 |
csv_data = pd.read_csv(CSV_DIR)
|
37 |
|
38 |
if LLM_type == 'Other':
|
|
|
70 |
new_data.append(0)
|
71 |
csv_data.loc[col] = new_data
|
72 |
csv_data = csv_data.to_csv(CSV_DIR, index=False)
|
73 |
+
submission_repo.push_to_hub()
|
74 |
return 0
|
75 |
|
76 |
def get_baseline_df():
|
77 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
78 |
+
submission_repo.git_pull()
|
79 |
df = pd.read_csv(CSV_DIR)
|
80 |
df = df.sort_values(by="Avg", ascending=False)
|
81 |
present_columns = MODEL_INFO + checkbox_group.value
|
|
|
83 |
return df
|
84 |
|
85 |
def get_all_df():
|
86 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
87 |
+
submission_repo.git_pull()
|
88 |
df = pd.read_csv(CSV_DIR)
|
89 |
df = df.sort_values(by="Avg", ascending=False)
|
90 |
return df
|
|
|
119 |
interactive=True,
|
120 |
)
|
121 |
|
|
|
|
|
|
|
122 |
data_component = gr.components.Dataframe(
|
123 |
value=get_baseline_df,
|
124 |
headers=COLUMN_NAMES,
|
|
|
134 |
# columns:
|
135 |
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
136 |
present_columns = MODEL_INFO + selected_columns
|
137 |
+
print("selected_columns",'|'.join(selected_columns))
|
138 |
updated_data = updated_data[present_columns]
|
139 |
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
|
140 |
updated_headers = present_columns
|
|
|
232 |
|
233 |
def refresh_data():
|
234 |
value1 = get_baseline_df()
|
|
|
235 |
return value1
|
236 |
|
237 |
with gr.Row():
|