File size: 8,616 Bytes
791df9f
17401cb
8c4c012
791df9f
 
 
 
 
 
17401cb
 
791df9f
 
 
e87d8da
 
 
 
 
791df9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c4c012
791df9f
 
 
17401cb
 
791df9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17401cb
791df9f
 
 
17401cb
 
791df9f
 
 
 
 
 
 
17401cb
 
791df9f
 
 
 
2de6503
 
 
 
 
 
e6d3144
2de6503
 
 
 
e6d3144
2de6503
 
 
 
 
 
 
 
 
8a71687
791df9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb95161
1f8bb47
791df9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de6503
791df9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c33ecc
791df9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87d8da
697e4de
e87d8da
791df9f
 
0c33ecc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import os

import gradio as gr
import pandas as pd
import json
import tempfile

from constants import *
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")

global data_component, filter_component

def download_csv():
    # pull the results and return this file!
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    return CSV_DIR

def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths

def add_new_eval(
    input_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    model_type: str,
    model_link: str,
    model_size: str,
    LLM_type: str,
    LLM_name_textbox: str,
):
    if input_file is None:
        return "Error! Empty file!"

    upload_data=json.loads(input_file)
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    csv_data = pd.read_csv(CSV_DIR)

    if LLM_type == 'Other':
        LLM_name = LLM_name_textbox
    else:
        LLM_name = LLM_type
    
    if revision_name_textbox == '':
        col = csv_data.shape[0]
        model_name = model_name_textbox
    else:
        model_name = revision_name_textbox
        model_name_list = csv_data['Model']
        name_list = [name.split(']')[0][1:] for name in model_name_list]
        if revision_name_textbox not in name_list:
            col = csv_data.shape[0]
        else:
            col = name_list.index(revision_name_textbox)    
    
    if model_link == '':
        model_name = model_name  # no url
    else:
        model_name = '[' + model_name + '](' + model_link + ')'

    # add new data
    new_data = [
        model_type, 
        model_name, 
        LLM_name
        ]
    for key in TASK_INFO:
        if key in upload_data:
            new_data.append(upload_data[key])
        else:
            new_data.append(0)
    csv_data.loc[col] = new_data
    csv_data = csv_data.to_csv(CSV_DIR, index=False)
    submission_repo.push_to_hub()
    return 0

def get_baseline_df():
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(CSV_DIR)
    df = df.sort_values(by="Avg", ascending=False)
    present_columns = MODEL_INFO + checkbox_group.value
    df = df[present_columns]
    return df

def get_all_df():
    submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
    submission_repo.git_pull()
    df = pd.read_csv(CSV_DIR)
    df = df.sort_values(by="Avg", ascending=False)
    return df

def on_filter_model_size_method_change(selected_columns):
    updated_data = get_all_df()

    # columns:
    selected_columns = [item for item in TASK_INFO if item in selected_columns]
    present_columns = MODEL_INFO + selected_columns
    # print("selected_columns",'|'.join(selected_columns))
    updated_data = updated_data[present_columns]
    updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
    updated_headers = present_columns
    update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
    # print(updated_data,present_columns,update_datatype)
    filter_component = gr.components.Dataframe(
        value=updated_data, 
        headers=updated_headers,
        type="pandas", 
        datatype=update_datatype,
        interactive=False,
        visible=True,
        )

    return filter_component#.value

block = gr.Blocks()


with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ“Š MVBench", elem_id="mvbench-tab-table", id=1):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                        lines=10,
                    )
    
            gr.Markdown(
                TABLE_INTRODUCTION
            )

            # selection for column part:
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                value=AVG_INFO,
                label="Evaluation Dimension",
                interactive=True,
            )

            data_component = gr.components.Dataframe(
                value=get_baseline_df, 
                headers=COLUMN_NAMES,
                type="pandas", 
                datatype=DATA_TITILE_TYPE,
                interactive=False,
                visible=True,
                )


            checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)

        # table 2
        with gr.TabItem("πŸ“ About", elem_id="mvbench-tab-table", id=2):
            gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
        
        # table 3 
        with gr.TabItem("πŸš€ Submit here! ", elem_id="mvbench-tab-table", id=3):
            gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model evaluation json file here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name", placeholder="LLaMA-7B"
                        )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name", placeholder="LLaMA-7B"
                    )
                    model_type = gr.Dropdown(
                        choices=[                         
                            "LLM",
                            "ImageLLM",
                            "VideoLLM",
                            "Other", 
                        ], 
                        label="Model type", 
                        multiselect=False,
                        value="ImageLLM",
                        interactive=True,
                    )
                    


                with gr.Column():
                    LLM_type = gr.Dropdown(
                        choices=["Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "InternLM-7B", "Other"],
                        label="LLM type", 
                        multiselect=False,
                        value="LLaMA-7B",
                        interactive=True,
                    )
                    LLM_name_textbox = gr.Textbox(
                        label="LLM model (for Other)",
                        placeholder="LLaMA-13B"
                    )
                    model_link = gr.Textbox(
                        label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf"
                    )
                    model_size = gr.Textbox(
                        label="Model size", placeholder="7B(Input content format must be 'number+B' or '-')"
                    )

            with gr.Column():

                input_file = gr.components.File(label = "Click to Upload a json File", file_count="single", type='binary')
                submit_button = gr.Button("Submit Eval")
    
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs = [
                        input_file,
                        model_name_textbox,
                        revision_name_textbox,
                        model_type,
                        model_link,
                        model_size,
                        LLM_type,
                        LLM_name_textbox,
                    ],
                )


    def refresh_data():
        value1 = get_baseline_df()
        return value1

    with gr.Row():
        data_run = gr.Button("Refresh")
        result_download = gt.Button("Download Leaderboard")
        data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
        result_download.click(download_csv, input=None, outputs=gr.File(label="download the csv of leaderborad."))


block.launch()