|
import argparse |
|
import multiprocessing as mp |
|
import os |
|
import time |
|
import cv2 |
|
import tqdm |
|
import sys |
|
|
|
from detectron2.config import get_cfg |
|
from detectron2.data.detection_utils import read_image |
|
from detectron2.utils.logger import setup_logger |
|
|
|
sys.path.insert(0, 'iGPT/models/grit_src/third_party/CenterNet2/projects/CenterNet2/') |
|
from centernet.config import add_centernet_config |
|
from ..grit_src.grit.config import add_grit_config |
|
|
|
from ..grit_src.grit.predictor import VisualizationDemo |
|
|
|
|
|
|
|
WINDOW_NAME = "GRiT" |
|
|
|
|
|
def dense_pred_to_caption(predictions): |
|
boxes = predictions["instances"].pred_boxes if predictions["instances"].has("pred_boxes") else None |
|
object_description = predictions["instances"].pred_object_descriptions.data |
|
new_caption = "" |
|
for i in range(len(object_description)): |
|
new_caption += (object_description[i] + ": " + str([int(a) for a in boxes[i].tensor.cpu().detach().numpy()[0]])) + "; " |
|
return new_caption |
|
|
|
def dense_pred_to_caption_only_name(predictions): |
|
|
|
object_description = predictions["instances"].pred_object_descriptions.data |
|
new_caption = ",".join(object_description) |
|
del predictions |
|
|
|
|
|
return new_caption |
|
|
|
def setup_cfg(args): |
|
cfg = get_cfg() |
|
|
|
|
|
add_centernet_config(cfg) |
|
add_grit_config(cfg) |
|
cfg.merge_from_file(args["config_file"]) |
|
cfg.merge_from_list(args["opts"]) |
|
|
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args["confidence_threshold"] |
|
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args["confidence_threshold"] |
|
if args["test_task"]: |
|
cfg.MODEL.TEST_TASK = args["test_task"] |
|
cfg.MODEL.BEAM_SIZE = 1 |
|
cfg.MODEL.ROI_HEADS.SOFT_NMS_ENABLED = False |
|
cfg.USE_ACT_CHECKPOINT = False |
|
cfg.freeze() |
|
return cfg |
|
|
|
def get_parser(device): |
|
arg_dict = {'config_file': "iGPT/models/grit_src/configs/GRiT_B_DenseCap_ObjectDet.yaml", 'device': device, 'confidence_threshold': 0.5, 'test_task': 'DenseCap', 'opts': ["MODEL.WEIGHTS", "model_zoo/grit_b_densecap_objectdet.pth"]} |
|
return arg_dict |
|
|
|
def image_caption_api(image_src, device): |
|
args2 = get_parser(device) |
|
cfg = setup_cfg(args2) |
|
demo = VisualizationDemo(cfg) |
|
if image_src: |
|
img = read_image(image_src, format="BGR") |
|
predictions, visualized_output = demo.run_on_image(img) |
|
new_caption = dense_pred_to_caption(predictions) |
|
return new_caption |
|
|
|
def init_demo(device): |
|
args2 = get_parser(device) |
|
cfg = setup_cfg(args2) |
|
demo = VisualizationDemo(cfg) |
|
return demo |
|
|
|
if __name__=="__main__": |
|
import os |
|
os.environ['CUDA_VISIBLE_DEVICES']='7' |
|
print(image_caption_api("images/dancing_example_4.mp4_20230417_135359.263.jpg",'cuda')) |