File size: 4,538 Bytes
0f90f73 ee25e9d 0f90f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import os
import sys
import cv2
import numpy as np
import torch
from PIL import Image
from .utils import gen_new_name, prompts
import torch
from omegaconf import OmegaConf
import numpy as np
from .inpainting_src.ldm_inpainting.ldm.models.diffusion.ddim import DDIMSampler
from .inpainting_src.ldm_inpainting.ldm.util import instantiate_from_config
from .utils import cal_dilate_factor, dilate_mask
def make_batch(image, mask, device):
image = image.astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = (1 - mask) * image
batch = {"image": image, "mask": mask, "masked_image": masked_image}
for k in batch:
batch[k] = batch[k].to(device=device)
batch[k] = batch[k] * 2.0 - 1.0
return batch
class LDMInpainting:
def __init__(self, device):
ckpt_path = 'model_zoo/ldm_inpainting_big.ckpt'
config = './iGPT/models/inpainting_src/ldm_inpainting/config.yaml'
self.ddim_steps = 50
self.device = device
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt_path)["state_dict"], strict=False)
self.model = model.to(device=device)
self.sampler = DDIMSampler(model)
@prompts(name="Remove the Masked Object",
description="useful when you want to remove an object by masking the region in the image. "
"like: remove masked object or inpaint the masked region.. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and mask_path")
@torch.no_grad()
def inference(self, inputs):
print(f'inputs: {inputs}')
# image, mask, device
img_path, mask_path = inputs.split(',')[0], inputs.split(',')[1]
img_path = img_path.strip()
mask_path = mask_path.strip()
image = Image.open(img_path)
mask = Image.open(mask_path).convert('L')
w, h = image.size
image = image.resize((512, 512))
mask = mask.resize((512, 512))
image = np.array(image)
mask = np.array(mask)
dilate_factor = cal_dilate_factor(mask.astype(np.uint8))
mask = dilate_mask(mask, dilate_factor)
with self.model.ema_scope():
batch = make_batch(image, mask, device=self.device)
# encode masked image and concat downsampled mask
c = self.model.cond_stage_model.encode(batch["masked_image"])
cc = torch.nn.functional.interpolate(batch["mask"],
size=c.shape[-2:])
c = torch.cat((c, cc), dim=1)
shape = (c.shape[1] - 1,) + c.shape[2:]
samples_ddim, _ = self.sampler.sample(S=self.ddim_steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False)
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
image = torch.clamp((batch["image"] + 1.0) / 2.0,
min=0.0, max=1.0)
mask = torch.clamp((batch["mask"] + 1.0) / 2.0,
min=0.0, max=1.0)
predicted_image = torch.clamp((x_samples_ddim + 1.0) / 2.0,
min=0.0, max=1.0)
inpainted = (1 - mask) * image + mask * predicted_image
inpainted = inpainted.cpu().numpy().transpose(0, 2, 3, 1)[0] * 255
# print(type(inpainted))
inpainted = inpainted.astype(np.uint8)
new_img_name = gen_new_name(img_path, 'LDMInpainter')
new_img = Image.fromarray(inpainted)
new_img = new_img.resize((w, h))
new_img.save(new_img_name)
print(
f"\nProcessed LDMInpainting, Inputs: {inputs}, "
f"Output Image: {new_img_name}")
return new_img_name
# return inpainted
'''
if __name__ == '__main__':
painting = LDMInpainting('cuda:0')
res = painting.inference(f'image/82e612_fe54ca_raw.png,image/04a785_fe54ca_mask.png.')
print(res)
'''
|