File size: 13,167 Bytes
0f90f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import logging
import warnings
import torch
import torch.nn as nn

from dataclasses import dataclass, field
from typing import Optional, Dict, Sequence, Union, List, Tuple, Any

from transformers import (
    LlamaForCausalLM,
    Blip2PreTrainedModel,
    Blip2VisionModel,
    Blip2Config,
    Blip2QFormerModel,
    GenerationConfig,
)

from transformers.utils import ModelOutput

warnings.filterwarnings('ignore')
logger = logging.getLogger(__name__)

@dataclass
class Blip2ForConditionalGenerationModelOutput(ModelOutput):
    """

    Class defining the outputs of [`Blip2ForConditionalGeneration`].



    Args:

        loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):

            Language modeling loss from the language model.

        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):

            Prediction scores of the language modeling head of the language model.

        vision_outputs (`BaseModelOutputWithPooling`):

            Outputs of the vision encoder.

        qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`):

            Outputs of the Q-Former (Querying Transformer).

        language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`):

            Outputs of the language model.

    """

    loss: Optional[Tuple[torch.FloatTensor]] = None
    logits: Optional[Tuple[torch.FloatTensor]] = None
    vision_outputs: Optional[torch.FloatTensor] = None
    qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None
    language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None

    def to_tuple(self) -> Tuple[Any]:
        return tuple(
            self[k]
            if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"]
            else getattr(self, k).to_tuple()
            for k in self.keys()
        )

class Blip2LlaMAForConditionalGeneration(Blip2PreTrainedModel):
    config_class = Blip2Config
    main_input_name = "pixel_values"

    def __init__(self, config: Blip2Config):
        super().__init__(config)

        self.vision_model = Blip2VisionModel(config.vision_config)

        self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
        self.qformer = Blip2QFormerModel(config.qformer_config)

        language_model = LlamaForCausalLM(config.text_config)
        self.language_model = language_model

        self.language_projection = nn.Linear(config.qformer_config.hidden_size, language_model.config.hidden_size)

        self.config.hidden_size = config.text_config.hidden_size
        self.num_queries = config.num_query_tokens
        self.offset = 5

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def get_output_embeddings(self) -> nn.Module:
        return self.language_model.get_output_embeddings()

    def get_encoder(self):
        return self.language_model.get_encoder()

    def get_decoder(self):
        return self.language_model.get_decoder()

    def extract_feature(

            self,

            pixel_values: torch.FloatTensor,

    ):
        image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state
        image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)

        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
        query_outputs = self.qformer(
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_attention_mask,
            return_dict=True,
        )
        query_output = query_outputs.last_hidden_state

        language_model_inputs = self.language_projection(query_output)
        return language_model_inputs

    def _tie_weights(self):
        if not self.config.use_decoder_only_language_model:
            self.language_model.encoder.embed_tokens = self.language_model.shared
            self.language_model.decoder.embed_tokens = self.language_model.shared

    def _preprocess_accelerate(self):
        r"""

        Some pre-processing hacks to make the model `accelerate` compatible. Check

        https://github.com/huggingface/transformers/pull/21707 for more details.

        """
        hf_device_map = self.hf_device_map

        if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1:
            # warn users about unexpected behavior when using multi-GPU + BLIP-2 + `accelerate`.
            logger.warning(
                "The `language_model` is not in the `hf_device_map` dictionary and you are running your script"
                " in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`."
                " Please pass a `device_map` that contains `language_model` to remove this warning."
                " Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for",
                " more details on creating a `device_map` for large models.",
            )

        if hasattr(self.language_model, "_hf_hook"):
            self.language_model._hf_hook.io_same_device = True  # For `generate` compatibility

    def forward(

            self,

            pixel_values: torch.FloatTensor,

            input_ids: torch.FloatTensor,

            attention_mask: Optional[torch.LongTensor] = None,

            output_attentions: Optional[bool] = None,

            output_hidden_states: Optional[bool] = None,

            labels: Optional[torch.LongTensor] = None,

            return_dict: Optional[bool] = None,



    ) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # step 1: forward the images through the vision encoder,
        # to get image embeddings of shape (batch_size, seq_len, hidden_size)
        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        image_embeds = vision_outputs[0]

        # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
        image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)

        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
        query_outputs = self.qformer(
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        query_output = query_outputs[0]

        # step 3: use the language model, conditioned on the query outputs and the prompt
        language_model_inputs = self.language_projection(query_output)
        assert language_model_inputs.shape[1] == self.num_queries

        inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
        # Human: <img><IMAGE></img>. Give the describe Assistant:
        # position of <image>: [offset: offset+num_queries]

        inputs_embeds[:, self.offset:self.offset + self.num_queries, :] = language_model_inputs
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)

        outputs = self.language_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs.logits if return_dict else outputs[0]
        loss = None

        # we compute the loss here since we need to take into account the sequence length of the query embeds
        if labels is not None:
            logits = logits[:, -labels.size(1):, :]
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous().to(logits.device).to(torch.long)

            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss(reduction="mean")
            loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))

        if not return_dict:
            output = (logits, vision_outputs, query_outputs, outputs)
            return ((loss,) + output) if loss is not None else output

        return Blip2ForConditionalGenerationModelOutput(
            loss=loss,
            logits=logits,
            vision_outputs=vision_outputs,
            qformer_outputs=query_outputs,
            language_model_outputs=outputs,
        )

    @torch.no_grad()
    def generate(

            self,

            pixel_values: torch.FloatTensor,

            input_ids: Optional[torch.LongTensor] = None,

            attention_mask: Optional[torch.LongTensor] = None,

            language_model_inputs: Optional[torch.FloatTensor] = None,

            generation_config: Optional[GenerationConfig] = None,

            **generate_kwargs,

    ) -> torch.LongTensor:
        """

        Overrides `generate` function to be able to use the model as a conditional generator.



        Args:

            pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):

                Input images to be processed.

            input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):

                The sequence used as a prompt for the generation.

            attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):

                Mask to avoid performing attention on padding token indices

            generation_config (`~generation.GenerationConfig`, *optional*):

                The generation configuration to be used as base parametrization for the generation call. `**kwargs`

                passed to generate matching the attributes of `generation_config` will override them. If

                `generation_config` is not provided, the default will be used, which had the following loading

                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model

                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s

                default values, whose documentation should be checked to parameterize generation.



        Returns:

            captions (list): A list of strings of length batch_size * num_captions.

        """
        if hasattr(self, "hf_device_map"):
            # preprocess for `accelerate`
            self._preprocess_accelerate()
        if language_model_inputs is None:
            batch_size = pixel_values.shape[0]
            image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state
            image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)

            query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
            query_outputs = self.qformer(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_attention_mask,
                return_dict=True,
            )
            query_output = query_outputs.last_hidden_state

            language_model_inputs = self.language_projection(query_output)
            assert language_model_inputs.shape[1] == self.num_queries

        if input_ids is None:
            input_ids = (
                torch.LongTensor([[self.config.text_config.bos_token_id]])
                .repeat(batch_size, 1)
                .to(image_embeds.device)
            )

        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)

        inputs_embeds = self.language_model.get_input_embeddings()(input_ids)

        # position of <image>: [offset: offset+num_queries]
        inputs_embeds[:, self.offset:self.offset + self.num_queries, :] = language_model_inputs

        outputs = self.language_model.generate(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            **generate_kwargs,
        )

        return outputs