File size: 15,625 Bytes
0f90f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee25e9d
 
0f90f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee25e9d
 
 
0f90f73
ee25e9d
0f90f73
ee25e9d
0f90f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee25e9d
0f90f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
"""Inference for FastChat models."""
import abc
from typing import Optional

import os
import requests
from PIL import Image
from io import BytesIO
import numpy as np

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

from transformers import (
    AutoTokenizer,
    GenerationConfig,
    StoppingCriteria,
    StoppingCriteriaList,
    Blip2VisionConfig
)
from .husky_src.husky_chat import Blip2LlaMAForConditionalGeneration

from .husky_src.load_ckpt import apply_delta

from .husky_src.conversation import (
    conv_templates,
    get_default_conv_template,
)

from .husky_src.compression import compress_module
from .utils import prompts, gen_new_name

DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMAGE_TOKEN = "<ImageContent>"
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"
IGNORE_INDEX = -100


def get_gpu_memory(max_gpus=None):
    gpu_memory = []
    num_gpus = (
        torch.cuda.device_count()
        if max_gpus is None
        else min(max_gpus, torch.cuda.device_count())
    )

    for gpu_id in range(num_gpus):
        with torch.cuda.device(gpu_id):
            device = torch.cuda.current_device()
            gpu_properties = torch.cuda.get_device_properties(device)
            total_memory = gpu_properties.total_memory / (1024 ** 3)
            allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
            available_memory = total_memory - allocated_memory
            gpu_memory.append(available_memory)
    return gpu_memory


def load_model(
        model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, debug=False
):
    kwargs = {"torch_dtype": torch.float16}

    if not os.path.exists(model_path[1]):
        apply_delta(model_path[0], model_path[1], model_path[2])

    tokenizer = AutoTokenizer.from_pretrained(
        model_path[1], use_fast=False)
    model = Blip2LlaMAForConditionalGeneration.from_pretrained(
        model_path[1], low_cpu_mem_usage=True, **kwargs
    )

    if load_8bit:
        compress_module(model, device)

    if (device == "cuda" and num_gpus == 1) or device == "mps":
        model.to(device)

    if debug:
        print(model)

    model = model.eval()
    return model, tokenizer


def load_image(image_file):
    if image_file.startswith('http') or image_file.startswith('https'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


def build_transform(input_size):
    crop_pct = 224 / 256
    size = int(input_size / crop_pct)
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize(size, interpolation=InterpolationMode.BICUBIC),
        T.CenterCrop(input_size),
        T.ToTensor(),
        T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
    ])
    return transform


class StoppingCriteriaSub(StoppingCriteria):

    def __init__(self, stops, encounters=1):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop):])).item():
                return True

        return False


@torch.inference_mode()
def generate_stream(
        model, tokenizer, image_processor, params, device
):
    prompt = params["prompt"]
    images = params.get("images", None)
    temperature = float(params.get("temperature", 0.7))
    max_new_tokens = int(params.get("max_new_tokens", 1024))

    num_queries = model.config.num_query_tokens

    stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
    stop_words_ids = [tokenizer(stop_word, return_tensors='pt')[
        'input_ids'].squeeze() for stop_word in stop_words]
    stopping_criteria = StoppingCriteriaList(
        [StoppingCriteriaSub(stops=stop_words_ids)])

    if images is not None:
        pixel_values = image_processor(load_image(images)).to(
            device)  # only support one image
        image_query = DEFAULT_IMG_START_TOKEN + \
            DEFAULT_IMAGE_TOKEN * num_queries + DEFAULT_IMG_END_TOKEN
        prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, image_query)
        model_inputs = tokenizer([prompt], return_tensors="pt")
        model_inputs["pixel_values"] = pixel_values
        model_inputs.pop("token_type_ids", None)
    else:
        raise NotImplementedError

    generation_config = GenerationConfig(
        bos_token_id=1,
        do_sample=True,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        stopping_criteria=stopping_criteria
    )

    generation_output = model.generate(
        **model_inputs,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True
    )

    preds = generation_output.sequences
    outputs = tokenizer.batch_decode(preds, skip_special_tokens=True)
    return outputs


def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()):
    # Rescale the grid of position embeddings when loading from state_dict.
    ntok_new = posemb_new.shape[1]
    if num_prefix_tokens:
        posemb_prefix, posemb_grid = posemb[:,
                                            :num_prefix_tokens], posemb[0, num_prefix_tokens:]
        ntok_new -= num_prefix_tokens
    else:
        posemb_prefix, posemb_grid = posemb[:, :0], posemb[0]
    gs_old = int(math.sqrt(len(posemb_grid)))

    if not len(gs_new):  # backwards compatibility
        gs_new = [int(math.sqrt(ntok_new))] * 2
    assert len(gs_new) >= 2
    posemb_grid = posemb_grid.reshape(
        1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(
        posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
    posemb_grid = posemb_grid.permute(
        0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
    posemb = torch.cat([posemb_prefix, posemb_grid], dim=1)
    return posemb


class Blip2VisionEmbeddings(nn.Module):
    def __init__(self, config: Blip2VisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.num_frames = getattr(self.config, "num_frames", 16)
        self.frame_stride = 4

        self.patch_embedding = nn.Conv3d(
            in_channels=3, out_channels=self.embed_dim,
            kernel_size=(self.frame_stride, self.patch_size, self.patch_size),
            stride=(self.frame_stride, self.patch_size, self.patch_size)
        )

        self.num_patches = int(self.num_frames // self.frame_stride) * \
            (self.image_size // self.patch_size) ** 2

        self.class_embedding = nn.Parameter(
            torch.randn(1, 1, self.embed_dim), )
        self.num_positions = self.num_patches + 1

        self.position_embedding = nn.Parameter(
            torch.randn(1, self.num_positions, self.embed_dim))

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        batch_size = pixel_values.shape[0]
        target_dtype = self.patch_embedding.weight.dtype
        patch_embeds = self.patch_embedding(pixel_values).squeeze(
            1)  # shape = [*, width, grid, grid]
        patch_embeds = patch_embeds.flatten(2).transpose(1, 2)

        class_embeds = self.class_embedding.expand(
            batch_size, 1, -1).to(target_dtype)
        embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
        embeddings = embeddings + \
            self.position_embedding[:, : embeddings.size(
                1), :].to(target_dtype)
        return embeddings


class Chat:
    def __init__(
            self,
            model_path,
            device,
            num_gpus=1,
            load_8bit=False,
            conv_template="multi_model",
            temperature=0.7,
            max_new_tokens=512,
    ):
        model, tokenizer = load_model(
            model_path, device, num_gpus, load_8bit=load_8bit
        )
        self.conv_template = conv_template
        self.model = model.to(device)
        self.tokenizer = tokenizer
        num_queries = model.config.num_query_tokens
        self.image_processor = build_transform(input_size=224)

        self.device = device
        self.dtype = model.dtype

        stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
        stop_words_ids = [tokenizer(stop_word, return_tensors='pt')[
            'input_ids'].squeeze() for stop_word in stop_words]
        stopping_criteria = StoppingCriteriaList(
            [StoppingCriteriaSub(stops=stop_words_ids)])

        if conv_template:
            conv = conv_templates[conv_template].copy()
        else:
            conv = get_default_conv_template(model_path).copy()

        self.conv = conv
        self.image_query = DEFAULT_IMG_START_TOKEN + \
            DEFAULT_IMAGE_TOKEN * num_queries + DEFAULT_IMG_END_TOKEN

        self.generation_config = GenerationConfig(
            bos_token_id=1,
            do_sample=True,
            top_k=20,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            stopping_criteria=stopping_criteria
        )

    def ask(self, text, conv):
        conversations = []
        if len(conv.messages) > 0:
            conv.append_message(conv.roles[0], text)
        else:
            conv.append_message(conv.roles[0], self.image_query + "\n" + text)

        conv.append_message(conv.roles[1], None)
        conversations.append(conv.get_prompt())
        return conversations

    @torch.no_grad()
    def get_image_embedding(self, image_file):
        image = load_image(image_file)
        pixel_values = self.image_processor(image)
        pixel_values = pixel_values.unsqueeze(
            0).to(self.device, dtype=self.dtype)
        language_model_inputs = self.model.extract_feature(pixel_values)
        return language_model_inputs

    @torch.no_grad()
    def answer(self, conversations, language_model_inputs):
        model_inputs = self.tokenizer(
            conversations,
            return_tensors="pt",
        )
        model_inputs.pop("token_type_ids", None)
        input_ids = model_inputs["input_ids"].to(self.device)
        attention_mask = model_inputs["attention_mask"].to(self.device)
        generation_output = self.model.generate(
            pixel_values=None,
            input_ids=input_ids,
            attention_mask=attention_mask,
            language_model_inputs=language_model_inputs,
            generation_config=self.generation_config,
            return_dict_in_generate=True,
            output_scores=True
        )

        preds = generation_output.sequences
        outputs = self.tokenizer.batch_decode(
            preds, skip_special_tokens=True)[0]
        return outputs
    
    def reset(self):
        if self.conv_template:
            self.conv = conv_templates[self.conv_template].copy()
        else:
            self.conv = get_default_conv_template(self.model_path).copy()

class HuskyVQA:
    def __init__(
        self,
        device
    ):
        model_path=["model_zoo/llama-7b-hf", "model_zoo/husky-7b-v0_01", 'model_zoo/husky-7b-delta-v0_01']
        load_8bit=True
        max_new_tokens=512
        self.chat = Chat(
            model_path=model_path,
            device=device,
            load_8bit=load_8bit,
            max_new_tokens=max_new_tokens,
            num_gpus=1,
        )

    # @prompts(name="Visual Question Answering or Image Caption",
    #          description="useful when you want to ask some questions about this image or generate a caption for it. "
    #                      "like: describe this image in details, or what can you see in this image? "
    #                      "The input to this tool should be a string like \"{image_path},{query}\", containing the image_path and user query.")
    @prompts(name="Answer Question About The Image",
             description="useful when you need an answer for a question based on an image. "
                         "like: what is the background color of this image, or how many cats in this figure "
                         "The input to this tool should be a comma separated string of two, representing the image_path and the question")
    def inference(self, inputs):
        print(f'inputs: {inputs}')
        image_file = inputs.split(',')[0]
        query = ','.join(inputs.split(',')[1:])

        vision_feature = self.chat.get_image_embedding(image_file)
        conversations = self.chat.ask(text=query, conv=self.chat.conv)
        outputs = self.chat.answer(conversations, vision_feature)
        # NOTE: strip is important to align with the training data.
        self.chat.conv.messages[-1][1] = outputs.strip()
        # print(f'HuskyVQA: {outputs}')
        self.reset()
        print(
            f"\nProcessed HuskyVQA, Inputs: {inputs}. "
            f"Output: {outputs}")
        return outputs
    
    @prompts(name="Get Photo Description",
             description="useful when you want to know what is inside the photo. "
                         "like: describe this image in detail, what is it in this figure, "
                         "or introduce this image."
                         "The input to this tool should be a string, representing the image_path. ")
    def inference_captioning(self, inputs):
        print(f'inputs: {inputs}')
        image_file = inputs.strip()
        query = 'please describe this image in details'

        vision_feature = self.chat.get_image_embedding(image_file)

        conversations = self.chat.ask(text=query, conv=self.chat.conv)
        outputs = self.chat.answer(conversations, vision_feature)
        # NOTE: strip is important to align with the training data.
        self.chat.conv.messages[-1][1] = outputs.strip()
        self.reset()
        print(
            f"\nProcessed HuskyVQA captioning, Inputs: {inputs}. "
            f"Output: {outputs}")

        return outputs
    
    @prompts(name="Answer Question About The Masked Image",
             description="useful when you need an answer for a question based on a masked image. "
                         "like: what is the background color in the masked region, "
                         "how many cats in this masked figure or what is in this masked figure. "
                         "The input to this tool should be a comma separated string of three, "
                         "representing the image_path, mask_path and the question")
    def inference_by_mask(self, inputs):
        print(f'inputs: {inputs}')
        image_path, mask_path = inputs.split(",")[0], inputs.split(",")[1]
        question = ','.join(inputs.split(',')[2:])
        # mask_path = self.SegmentAnything.inference_by_mask(image_path)
        raw_image = Image.open(image_path).convert('RGB')
        mask_image = Image.open(mask_path).convert('RGB')
        new_image_arr = np.array(raw_image, dtype=np.uint8) // 255 * np.array(mask_image)
        new_image = Image.fromarray(new_image_arr)
        new_image_path = gen_new_name(image_path, '')
        new_image.save(new_image_path, 'PNG')
        answer = self.inference(f'{new_image_path},{question}')
        self.reset()
        print(f"\nProcessed HuskyVQA, Inputs: {inputs}, Input Question: {question}, "
              f"Output Answer: {answer}")
        return answer

    def reset(self):
        self.chat.reset()