File size: 15,625 Bytes
0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 ee25e9d 0f90f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
"""Inference for FastChat models."""
import abc
from typing import Optional
import os
import requests
from PIL import Image
from io import BytesIO
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import (
AutoTokenizer,
GenerationConfig,
StoppingCriteria,
StoppingCriteriaList,
Blip2VisionConfig
)
from .husky_src.husky_chat import Blip2LlaMAForConditionalGeneration
from .husky_src.load_ckpt import apply_delta
from .husky_src.conversation import (
conv_templates,
get_default_conv_template,
)
from .husky_src.compression import compress_module
from .utils import prompts, gen_new_name
DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMAGE_TOKEN = "<ImageContent>"
DEFAULT_IMG_START_TOKEN = "<img>"
DEFAULT_IMG_END_TOKEN = "</img>"
IGNORE_INDEX = -100
def get_gpu_memory(max_gpus=None):
gpu_memory = []
num_gpus = (
torch.cuda.device_count()
if max_gpus is None
else min(max_gpus, torch.cuda.device_count())
)
for gpu_id in range(num_gpus):
with torch.cuda.device(gpu_id):
device = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device)
total_memory = gpu_properties.total_memory / (1024 ** 3)
allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def load_model(
model_path, device, num_gpus, max_gpu_memory=None, load_8bit=False, debug=False
):
kwargs = {"torch_dtype": torch.float16}
if not os.path.exists(model_path[1]):
apply_delta(model_path[0], model_path[1], model_path[2])
tokenizer = AutoTokenizer.from_pretrained(
model_path[1], use_fast=False)
model = Blip2LlaMAForConditionalGeneration.from_pretrained(
model_path[1], low_cpu_mem_usage=True, **kwargs
)
if load_8bit:
compress_module(model, device)
if (device == "cuda" and num_gpus == 1) or device == "mps":
model.to(device)
if debug:
print(model)
model = model.eval()
return model, tokenizer
def load_image(image_file):
if image_file.startswith('http') or image_file.startswith('https'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def build_transform(input_size):
crop_pct = 224 / 256
size = int(input_size / crop_pct)
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize(size, interpolation=InterpolationMode.BICUBIC),
T.CenterCrop(input_size),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
return transform
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops, encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
@torch.inference_mode()
def generate_stream(
model, tokenizer, image_processor, params, device
):
prompt = params["prompt"]
images = params.get("images", None)
temperature = float(params.get("temperature", 0.7))
max_new_tokens = int(params.get("max_new_tokens", 1024))
num_queries = model.config.num_query_tokens
stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')[
'input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)])
if images is not None:
pixel_values = image_processor(load_image(images)).to(
device) # only support one image
image_query = DEFAULT_IMG_START_TOKEN + \
DEFAULT_IMAGE_TOKEN * num_queries + DEFAULT_IMG_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, image_query)
model_inputs = tokenizer([prompt], return_tensors="pt")
model_inputs["pixel_values"] = pixel_values
model_inputs.pop("token_type_ids", None)
else:
raise NotImplementedError
generation_config = GenerationConfig(
bos_token_id=1,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping_criteria
)
generation_output = model.generate(
**model_inputs,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True
)
preds = generation_output.sequences
outputs = tokenizer.batch_decode(preds, skip_special_tokens=True)
return outputs
def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()):
# Rescale the grid of position embeddings when loading from state_dict.
ntok_new = posemb_new.shape[1]
if num_prefix_tokens:
posemb_prefix, posemb_grid = posemb[:,
:num_prefix_tokens], posemb[0, num_prefix_tokens:]
ntok_new -= num_prefix_tokens
else:
posemb_prefix, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
if not len(gs_new): # backwards compatibility
gs_new = [int(math.sqrt(ntok_new))] * 2
assert len(gs_new) >= 2
posemb_grid = posemb_grid.reshape(
1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(
posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
posemb_grid = posemb_grid.permute(
0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_prefix, posemb_grid], dim=1)
return posemb
class Blip2VisionEmbeddings(nn.Module):
def __init__(self, config: Blip2VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.num_frames = getattr(self.config, "num_frames", 16)
self.frame_stride = 4
self.patch_embedding = nn.Conv3d(
in_channels=3, out_channels=self.embed_dim,
kernel_size=(self.frame_stride, self.patch_size, self.patch_size),
stride=(self.frame_stride, self.patch_size, self.patch_size)
)
self.num_patches = int(self.num_frames // self.frame_stride) * \
(self.image_size // self.patch_size) ** 2
self.class_embedding = nn.Parameter(
torch.randn(1, 1, self.embed_dim), )
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(
torch.randn(1, self.num_positions, self.embed_dim))
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values).squeeze(
1) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(
batch_size, 1, -1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + \
self.position_embedding[:, : embeddings.size(
1), :].to(target_dtype)
return embeddings
class Chat:
def __init__(
self,
model_path,
device,
num_gpus=1,
load_8bit=False,
conv_template="multi_model",
temperature=0.7,
max_new_tokens=512,
):
model, tokenizer = load_model(
model_path, device, num_gpus, load_8bit=load_8bit
)
self.conv_template = conv_template
self.model = model.to(device)
self.tokenizer = tokenizer
num_queries = model.config.num_query_tokens
self.image_processor = build_transform(input_size=224)
self.device = device
self.dtype = model.dtype
stop_words = ["Human: ", "Assistant: ", "###", "\n\n"]
stop_words_ids = [tokenizer(stop_word, return_tensors='pt')[
'input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)])
if conv_template:
conv = conv_templates[conv_template].copy()
else:
conv = get_default_conv_template(model_path).copy()
self.conv = conv
self.image_query = DEFAULT_IMG_START_TOKEN + \
DEFAULT_IMAGE_TOKEN * num_queries + DEFAULT_IMG_END_TOKEN
self.generation_config = GenerationConfig(
bos_token_id=1,
do_sample=True,
top_k=20,
temperature=temperature,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping_criteria
)
def ask(self, text, conv):
conversations = []
if len(conv.messages) > 0:
conv.append_message(conv.roles[0], text)
else:
conv.append_message(conv.roles[0], self.image_query + "\n" + text)
conv.append_message(conv.roles[1], None)
conversations.append(conv.get_prompt())
return conversations
@torch.no_grad()
def get_image_embedding(self, image_file):
image = load_image(image_file)
pixel_values = self.image_processor(image)
pixel_values = pixel_values.unsqueeze(
0).to(self.device, dtype=self.dtype)
language_model_inputs = self.model.extract_feature(pixel_values)
return language_model_inputs
@torch.no_grad()
def answer(self, conversations, language_model_inputs):
model_inputs = self.tokenizer(
conversations,
return_tensors="pt",
)
model_inputs.pop("token_type_ids", None)
input_ids = model_inputs["input_ids"].to(self.device)
attention_mask = model_inputs["attention_mask"].to(self.device)
generation_output = self.model.generate(
pixel_values=None,
input_ids=input_ids,
attention_mask=attention_mask,
language_model_inputs=language_model_inputs,
generation_config=self.generation_config,
return_dict_in_generate=True,
output_scores=True
)
preds = generation_output.sequences
outputs = self.tokenizer.batch_decode(
preds, skip_special_tokens=True)[0]
return outputs
def reset(self):
if self.conv_template:
self.conv = conv_templates[self.conv_template].copy()
else:
self.conv = get_default_conv_template(self.model_path).copy()
class HuskyVQA:
def __init__(
self,
device
):
model_path=["model_zoo/llama-7b-hf", "model_zoo/husky-7b-v0_01", 'model_zoo/husky-7b-delta-v0_01']
load_8bit=True
max_new_tokens=512
self.chat = Chat(
model_path=model_path,
device=device,
load_8bit=load_8bit,
max_new_tokens=max_new_tokens,
num_gpus=1,
)
# @prompts(name="Visual Question Answering or Image Caption",
# description="useful when you want to ask some questions about this image or generate a caption for it. "
# "like: describe this image in details, or what can you see in this image? "
# "The input to this tool should be a string like \"{image_path},{query}\", containing the image_path and user query.")
@prompts(name="Answer Question About The Image",
description="useful when you need an answer for a question based on an image. "
"like: what is the background color of this image, or how many cats in this figure "
"The input to this tool should be a comma separated string of two, representing the image_path and the question")
def inference(self, inputs):
print(f'inputs: {inputs}')
image_file = inputs.split(',')[0]
query = ','.join(inputs.split(',')[1:])
vision_feature = self.chat.get_image_embedding(image_file)
conversations = self.chat.ask(text=query, conv=self.chat.conv)
outputs = self.chat.answer(conversations, vision_feature)
# NOTE: strip is important to align with the training data.
self.chat.conv.messages[-1][1] = outputs.strip()
# print(f'HuskyVQA: {outputs}')
self.reset()
print(
f"\nProcessed HuskyVQA, Inputs: {inputs}. "
f"Output: {outputs}")
return outputs
@prompts(name="Get Photo Description",
description="useful when you want to know what is inside the photo. "
"like: describe this image in detail, what is it in this figure, "
"or introduce this image."
"The input to this tool should be a string, representing the image_path. ")
def inference_captioning(self, inputs):
print(f'inputs: {inputs}')
image_file = inputs.strip()
query = 'please describe this image in details'
vision_feature = self.chat.get_image_embedding(image_file)
conversations = self.chat.ask(text=query, conv=self.chat.conv)
outputs = self.chat.answer(conversations, vision_feature)
# NOTE: strip is important to align with the training data.
self.chat.conv.messages[-1][1] = outputs.strip()
self.reset()
print(
f"\nProcessed HuskyVQA captioning, Inputs: {inputs}. "
f"Output: {outputs}")
return outputs
@prompts(name="Answer Question About The Masked Image",
description="useful when you need an answer for a question based on a masked image. "
"like: what is the background color in the masked region, "
"how many cats in this masked figure or what is in this masked figure. "
"The input to this tool should be a comma separated string of three, "
"representing the image_path, mask_path and the question")
def inference_by_mask(self, inputs):
print(f'inputs: {inputs}')
image_path, mask_path = inputs.split(",")[0], inputs.split(",")[1]
question = ','.join(inputs.split(',')[2:])
# mask_path = self.SegmentAnything.inference_by_mask(image_path)
raw_image = Image.open(image_path).convert('RGB')
mask_image = Image.open(mask_path).convert('RGB')
new_image_arr = np.array(raw_image, dtype=np.uint8) // 255 * np.array(mask_image)
new_image = Image.fromarray(new_image_arr)
new_image_path = gen_new_name(image_path, '')
new_image.save(new_image_path, 'PNG')
answer = self.inference(f'{new_image_path},{question}')
self.reset()
print(f"\nProcessed HuskyVQA, Inputs: {inputs}, Input Question: {question}, "
f"Output Answer: {answer}")
return answer
def reset(self):
self.chat.reset()
|