Spaces:
Sleeping
Sleeping
import face_recognition | |
import cv2 | |
import numpy as np | |
import imageSegmentation | |
from mediapipe.tasks.python import vision | |
import Visualization_utilities as vis | |
import time | |
# Get a reference to webcam #0 (the default one) | |
# video_capture = cv2.VideoCapture(0) | |
# Load a sample picture and learn how to recognize it. | |
def get_face_encoding(path): | |
print(f'path: {path}') | |
print('hello') | |
HKID_cropped = imageSegmentation.auto_cropping(path) | |
cv2.imwrite('saved/HKID.jpg', HKID_cropped) | |
HKID_image = face_recognition.load_image_file("saved/HKID.jpg") | |
HKID_face_encoding = face_recognition.face_encodings(HKID_image)[0] | |
return HKID_face_encoding | |
# HKID_image = face_recognition.load_image_file("saved/HKID.jpg") | |
# HKID_face_encoding = face_recognition.face_encodings(HKID_image)[0] | |
# Create arrays of known face encodings and their names | |
# known_face_encodings = [ | |
# HKID_face_encoding | |
# ] | |
# known_face_names = [ | |
# "Marco" | |
# ] | |
# Initialize some variables | |
# face_locations = [] | |
# face_encodings = [] | |
# face_names = [] | |
# process_this_frame = True | |
# score = [] | |
# faces = 0 # number of faces | |
# while True: | |
# # Grab a single frame of video | |
# ret, frame = video_capture.read() | |
# # # Draw a label with a name below the face | |
# # cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) | |
# # font = cv2.FONT_HERSHEY_DUPLEX | |
# # cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) | |
# # Display the resulting image | |
# cv2.imshow('Video', frame) | |
# # Hit 'q' on the keyboard to quit! | |
# if cv2.waitKey(1) & 0xFF == ord('q'): | |
# break | |
def process_frame(frame, process_this_frame, face_locations, faces, face_names, score): | |
hkid_face_encoding = get_face_encoding("image") | |
print(f'encoding: {hkid_face_encoding}') | |
known_face_encodings = [ | |
hkid_face_encoding | |
] | |
known_face_names = [ | |
"recognized" | |
] | |
# Only process every other frame of video to save time | |
if process_this_frame: | |
face_names = [] | |
# Resize frame of video to 1/4 size for faster face recognition processing | |
# if frame != None: | |
# print(f'frame: {len(frame)}') | |
# try: | |
# small_frame = cv2.imread(image_dir) | |
# small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) | |
# else: | |
# print('fram has nth') | |
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) | |
rgb_small_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # edited | |
# Find all the faces and face encodings in the current frame of video | |
face_locations = face_recognition.face_locations(rgb_small_frame) | |
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) | |
faces = len(face_encodings) # number of faces | |
for face_encoding in face_encodings: | |
# See if the face is a match for the known face(s) | |
matches = face_recognition.compare_faces(known_face_encodings, face_encoding) | |
name = "Unknown" | |
# # If a match was found in known_face_encodings, just use the first one. | |
# if True in matches: | |
# first_match_index = matches.index(True) | |
# name = known_face_names[first_match_index] | |
# Or instead, use the known face with the smallest distance to the new face | |
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) | |
best_match_index = np.argmin(face_distances) | |
print(face_distances) | |
if matches[best_match_index] and face_distances[best_match_index] < 0.45: | |
score.append(face_distances[best_match_index]) | |
name = known_face_names[best_match_index] | |
else: | |
score = [] | |
face_names.append(name) | |
# if len(score) > 20: | |
# avg_score = sum(score) / len(score) | |
# Display the results | |
if faces > 1 : | |
# Define the text and font properties | |
text = "More than 1 person detected!" | |
font = cv2.FONT_HERSHEY_DUPLEX | |
font_scale = 1 | |
font_thickness = 2 | |
# Calculate the text size | |
window_height = frame.shape[0] | |
window_width = frame.shape[1] | |
text_size, _ = cv2.getTextSize(text, font, font_scale, font_thickness) | |
# Calculate the text position | |
text_x = int((window_width - text_size[0]) / 2) | |
text_y = window_height - int(text_size[1] / 2) | |
cv2.putText(frame, text, (text_x, text_y), font, font_scale, (255, 255, 255), font_thickness, cv2.LINE_AA) | |
for (top, right, bottom, left), name in zip(face_locations, face_names): | |
# Scale back up face locations since the frame we detected in was scaled to 1/4 size | |
# top *= 4 | |
# right *= 4 | |
# bottom *= 4 | |
# left *= 4 | |
# Draw a box around the face | |
cv2.rectangle(frame, (left, top), (right, bottom), (65, 181, 41), 4) | |
# Define the name box properties | |
name_box_color = (44, 254, 0) | |
name_box_alpha = 0.7 | |
name_box_thickness = -1 | |
# Define the text properties | |
font = cv2.FONT_HERSHEY_TRIPLEX | |
font_scale = 1 | |
font_thickness = 2 | |
text_color = (255, 255, 255) | |
# Calculate the text size | |
text_width, text_height = cv2.getTextSize(name, font, font_scale, font_thickness)[0] | |
# Draw the name box | |
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), | |
name_box_color, name_box_thickness) | |
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), | |
name_box_color, cv2.FILLED) | |
# Draw the name text | |
cv2.putText(frame, name, (left + 70, bottom - 6), font, font_scale, text_color, font_thickness) | |
process_this_frame = process_this_frame | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | |
return frame, process_this_frame, face_locations, faces, face_names, score | |
def convert_distance_to_percentage(distance, threshold): | |
if distance < threshold: | |
score = 80 | |
score += distance / 0.45 * 20 | |
else: | |
score = (1 - distance) * 100 | |
return score | |
# percent = convert_distance_to_percentage(avg_score, 0.45) | |
# print(f'avg_score = {percent:.2f}% : Approved!') | |
# # Release handle to the webcam | |
# video_capture.release() | |
# cv2.destroyAllWindows() |