Spaces:
Sleeping
Sleeping
File size: 5,213 Bytes
1f72938 9312707 e029c8d 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 9312707 e029c8d 9312707 1f72938 9312707 1f72938 9312707 1f72938 e029c8d 1f72938 9312707 1f72938 9312707 1f72938 9312707 1f72938 e029c8d 1f72938 9312707 1f72938 e029c8d 1f72938 e029c8d 9312707 1f72938 e029c8d 1f72938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import streamlit as st
import similarity_check as sc
import cv2
from PIL import Image
import numpy as np
import tempfile
from streamlit_webrtc import VideoTransformerBase, webrtc_streamer
import demo
import time
import streamlit as st
import requests
import json
import request_json.sbt_request_generator as sbt
import pathlib
import os
import check_hkid_validity as chv
import search_engine as se
def main():
# st.title("SBT Web Application")
# today's date = get_today_date
# global data
html_temp = """
<body style="background-color:red;">
<div style="background-color:teal ;padding:10px">
<h2 style="color:white;text-align:center;">SBT Web Application</h2>
</div>
</body>
"""
st.markdown(html_temp, unsafe_allow_html=True)
if 'hkid_image_validity' not in st.session_state:
st.session_state.hkid_image_validity = False
if 'data' not in st.session_state:
st.session_state['data'] = {}
st.header("I. Similarity Check")
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg', 'pdf'], accept_multiple_files=True)
if len(image_file) == 1:
image1 = Image.open(image_file[0])
st.text("HKID card")
st.image(image1)
image1.save('image/hkid.jpg', 'JPEG')
if chv.check_hkid('image/hkid.jpg'):
st.text("Valid HKID card.")
st.session_state.hkid_image_validity = True
else:
st.text("Invalid HKID card. Please upload again!")
st.session_state.hkid_image_validity = False
elif len(image_file) == 2:
image1 = Image.open(image_file[0])
st.text("HKID card")
st.image(image1)
image2 = Image.open(image_file[1])
# image2 = image_file[1]
# image2.save('image/hkid.jpg', 'JPEG')
# file_name = image_file[1].name
st.text("Bank statement")
st.image(image2)
print(f"the id is: {st.session_state.hkid_image_validity}")
# if image_file2 is not None:
# image2 = Image.open(image_file)
# st.text("Bank statement")
# st.image(image2)
# path1 = 'IMG_4495.jpg'
# path2 = 'hangseng_page-0001.jpg'
# image1 = save_image(image1)
# image2 = save_image(image2)
data = {}
if st.button("Recognise"):
with st.spinner('Wait for it...'):
# global data
data = sc.get_data(image1, image2)
# se.get_data_link(data['chi_name_id'], data["name_on_id"], data["address"])
if 'data' in st.session_state:
st.session_state['data'] = data
st.success('Done!')
score = int(st.session_state['data']['similarity_score'])
st.text(f'score: {score}')
if (score>85):
st.text(f'matched')
else:
st.text(f'unmatched')
data = st.session_state['data']
st.header("IIa. HKID Data Extraction")
st.text(f'English Name: {data["name_on_id"]}') # name is without space
st.text(f'Chinese Name: {data["chi_name_id"]}') # name is without space
st.text(f'HKID: {data["hkid"]} and validity: {data["validity"]}')
st.text(f'Date of issue: {data["issue_date"]}')
st.header("IIb. Bank Statement Data Extraction")
st.text(f'Name: {data["nameStatement"]}')
st.text(f'Address: {data["address"]}')
st.text(f'Bank: {data["bank"]}')
st.text(f'Date: {data["statementDate"]}')
st.text(f'Asset: {data["totalAsset"]} hkd')
st.text(f'Liabilities: {data["totalLiability"]} hkd')
if 'data' in st.session_state:
tempout = st.session_state['data']
print(f'hello: {tempout}')
st.header("II. Facial Recognition")
run = st.checkbox('Run')
# webrtc_streamer(key="example")
# 1. Web Rtc
# webrtc_streamer(key="jhv", video_frame_callback=video_frame_callback)
# # init the camera
face_locations = []
# face_encodings = []
face_names = []
process_this_frame = True
score = []
faces = 0
FRAME_WINDOW = st.image([])
camera = cv2.VideoCapture(0)
while run:
# Capture frame-by-frame
# Grab a single frame of video
ret, frame = camera.read()
result, process_this_frame, face_locations, faces, face_names, score = demo.process_frame(frame, process_this_frame, face_locations, faces, face_names, score)
# Display the resulting image
FRAME_WINDOW.image(result)
print(score)
if len(score) > 20:
avg_score = sum(score) / len(score)
st.write(avg_score)
# st.write(f'{demo.convert_distance_to_percentage(avg_score, 0.45)}')
camera.release()
run = not run
st.session_state['data']['avg_score'] = str(avg_score)
else:
st.write('Stopped')
if st.button("Confirm"):
st.experimental_set_query_params(
verified=True,
)
with st.spinner('Sending data...'):
print(st.session_state['data'])
sbt.split_data(st.session_state['data'])
st.success('Done!')
if __name__ == '__main__':
main()
|