File size: 15,041 Bytes
585747f
ae02035
ae8f10f
cdf5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe88e4d
cdf5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe88e4d
cdf5a0b
 
 
 
 
 
 
 
 
 
585747f
32e4ce7
cdf5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c875e8e
3ee3c91
32e4ce7
ae8f10f
32e4ce7
 
ae8f10f
22e8acb
32e4ce7
cdf5a0b
 
 
 
 
 
 
 
 
73c565e
cdf5a0b
 
 
 
 
 
 
efafbe1
cdf5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efafbe1
cdf5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efafbe1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import gradio as gr
import base64
import random
import gradio as gr
#import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
from pypdf import PdfReader
import uuid
#from query import tasks
from gradio_client import Client

from agent import (
    PREFIX,
    GET_CHART,
    COMPRESS_DATA_PROMPT,
    COMPRESS_DATA_PROMPT_SMALL,
    LOG_PROMPT,
    LOG_RESPONSE,
)
api=HfApi()

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")


def sort_fn(inp):

    client_sort = Client("Omnibus/sort_document")
    sen,nouns = client_sort.predict(
    		f"{inp}",	# str  in 'Paste Text' Textbox component
    		api_name="/sort_doc"
    )
    return nouns

def find_all(url):
    return_list=[]
    print (url)
    #if action_input in query.tasks:
    print (f"trying URL:: {url}")        
    try:
        if url != "" and url != None:    
            out = []
            source = requests.get(url)
            #source = urllib.request.urlopen(url).read()
            soup = bs4.BeautifulSoup(source.content,'lxml')

            rawp=(f'RAW TEXT RETURNED: {soup.text}')
            cnt=0
            cnt+=len(rawp)
            out.append(rawp)
            out.append("HTML fragments: ")
            q=("a","p","span","content","article")
            for p in soup.find_all("a"):
                out.append([{"LINK TITLE":p.get('title'),"URL":p.get('href'),"STRING":p.string}])
  
            print(rawp)
            return True, rawp
        else: 
            return False, "Enter Valid URL"
    except Exception as e:
        print (e)
        return False, f'Error: {e}'

        #else:
    #    history = "observation: The search query I used did not return a valid response"
        
    return "MAIN", None, history, task

FIND_KEYWORDS="""Find keywords from the dictionary of provided keywords that are relevant to the users query.
Return the keyword:value pairs from the list in the form of a JSON file output.
dictionary:
{keywords}
user query:
"""

def find_keyword_fn(c,inp,data):

    data=str(data)
    seed=random.randint(1,1000000000)
    divr=int(c)/20000
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    out = []
    s=0
    e=chunk
    print(f'e:: {e}')
    #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = data[s:e]
        resp = run_gpt(
            FIND_KEYWORDS,
            stop_tokens=[],
            max_tokens=8192,
            seed=seed,
            keywords=data,
        ).strip("\n")    
        out.append(resp)
        #new_history = resp
        print (resp)
        #out+=resp
        e=e+chunk
        s=s+chunk    
    return out 
    

def read_txt(txt_path):
    text=""
    with open(txt_path,"r") as f:
        text = f.read()
    f.close()
    print (text)
    return text

def read_pdf(pdf_path):
    text=""
    reader = PdfReader(f'{pdf_path}')
    number_of_pages = len(reader.pages)
    for i in range(number_of_pages):
        page = reader.pages[i]
        text = f'{text}\n{page.extract_text()}'
    print (text)
    return text

error_box=[]
def read_pdf_online(url):
    uid=uuid.uuid4()
    print(f"reading {url}")
    response = requests.get(url, stream=True)
    print(response.status_code)
    text=""
#################
    
#####################
    try:
        if response.status_code == 200:
            with open("test.pdf", "wb") as f:
                f.write(response.content)
            #f.close()
            #out = Path("./data.pdf")
            #print (out)
            reader = PdfReader("test.pdf")
            number_of_pages = len(reader.pages)
            print(number_of_pages)
            for i in range(number_of_pages):
                page = reader.pages[i]
                text = f'{text}\n{page.extract_text()}'
                print(f"PDF_TEXT:: {text}")
            return text
        else:
            text = response.status_code
            error_box.append(url)
            print(text)
            return text


    except Exception as e:
        print (e)
        return e


VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def run_gpt_no_prefix(
    prompt_template,
    stop_tokens,
    max_tokens,
    seed,
    **prompt_kwargs,
):
    print(seed)
    try:
        generate_kwargs = dict(
            temperature=0.9,
            max_new_tokens=max_tokens,
            top_p=0.95,
            repetition_penalty=1.0,
            do_sample=True,
            seed=seed,
        )
        
        content = prompt_template.format(**prompt_kwargs)
        #if VERBOSE:
        print(LOG_PROMPT.format(content))
        
        
        #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
        #formatted_prompt = format_prompt(f'{content}', history)
    
        stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
        resp = ""
        for response in stream:
            resp += response.token.text
            #yield resp
    
        #if VERBOSE:
        print(LOG_RESPONSE.format(resp))
        return resp
    except Exception as e:
        print(f'no_prefix_error:: {e}')
        return "Error"
def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    seed,
    **prompt_kwargs,
):
    print(seed)
    timestamp=datetime.datetime.now()
    
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=max_tokens,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    
    content = PREFIX.format(
        timestamp=timestamp,
        purpose="Compile the provided data and complete the users task"
    ) + prompt_template.format(**prompt_kwargs)
    #if VERBOSE:
    print(LOG_PROMPT.format(content))
    
    
    #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    #formatted_prompt = format_prompt(f'{content}', history)

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text
        #yield resp

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp

    
def compress_data(c, instruct, history):
    seed=random.randint(1,1000000000)
    
    print (c)
    #tot=len(purpose)
    #print(tot)
    divr=int(c)/MAX_DATA
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    print(f'chunk:: {chunk}')
    print(f'divr:: {divr}')
    print (f'divi:: {divi}')
    out = []
    #out=""
    s=0
    e=chunk
    print(f'e:: {e}')
    new_history=""
    #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = history[s:e]
        
        resp = run_gpt(
            COMPRESS_DATA_PROMPT_SMALL,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=8192,
            seed=seed,
            direction=instruct,
            knowledge="",
            history=hist,
        ).strip("\n")
        out.append(resp)
        #new_history = resp
        print (resp)
        #out+=resp
        e=e+chunk
        s=s+chunk
    return out

    
def compress_data_og(c, instruct, history):
    seed=random.randint(1,1000000000)
    
    print (c)
    #tot=len(purpose)
    #print(tot)
    divr=int(c)/MAX_DATA
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    print(f'chunk:: {chunk}')
    print(f'divr:: {divr}')
    print (f'divi:: {divi}')
    out = []
    #out=""
    s=0
    e=chunk
    print(f'e:: {e}')
    new_history=""
    #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = history[s:e]
        
        resp = run_gpt(
            COMPRESS_DATA_PROMPT,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=8192,
            seed=seed,
            direction=instruct,
            knowledge=new_history,
            history=hist,
        ).strip("\n")
        
        new_history = resp
        print (resp)
        out+=resp
        e=e+chunk
        s=s+chunk
    '''
    resp = run_gpt(
        COMPRESS_DATA_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=8192,
        seed=seed,
        direction=instruct,
        knowledge=new_history,
        history="All data has been recieved.",
    )'''
    print ("final" + resp)
    #history = "observation: {}\n".format(resp)
    return resp

def get_chart(inp):
    seed=random.randint(1,1000000000)
    try:
        resp = run_gpt_no_prefix(
            GET_CHART,
            stop_tokens=[],
            max_tokens=8192,
            seed=seed,
            inp=inp,
        ).strip("\n")
        print(resp)
    except Exception as e:
        print(f'Error:: {e}')
        resp = e
    return resp

def format_json(inp):

    print("FORMATTING:::")
    print(type(inp))
    print("###########")
    print(inp)
    print("###########")
    print("###########")
    new_str=""
    matches=["```","#","//"]
    for i,line in enumerate(inp):
        line = line.strip()
        print(line)
        #if not any(x in line for x in matches):
        new_str+=line.strip("\n").strip("```").strip("#").strip("//")
    print("###########")
    print("###########")
    #inp = inp.strip("<\s>")
    new_str=new_str.strip("</s>")
    out_json=eval(new_str)
    print(out_json)
    print("###########")
    print("###########")
    
    return out_json

def mm(graph):
    code_out=""
    for ea in graph.split("\n"):
        code=ea.strip().strip("\n")
        code_out+=code
    #out_html=f'''<div><iframe src="https://omnibus-mermaid-script.static.hf.space/index.html?mermaid={code_out}&rand={random.randint(1,1111111111)}" height="500" width="500"></iframe></div>'''
    out_html=f'''<div><iframe src="https://omnibus-mermaid-script.static.hf.space/index.html?mermaid={code_out}" height="500" width="500"></iframe></div>'''
    return out_html
    
def summarize(inp,history,report_check,chart_check,data=None,files=None,directory=None,url=None,pdf_url=None,pdf_batch=None):
    json_box=[]
    chart_out=""
    if inp == "":
        inp = "Process this data"
    history.clear()
    history = [(inp,"Working on it...")] 
    yield "",history,chart_out,chart_out,json_box

    if pdf_batch.startswith("http"):
        c=0
        data=""
        for i in str(pdf_batch):
            if i==",":
                c+=1
        print (f'c:: {c}')

        try:
            for i in range(c+1):
                batch_url = pdf_batch.split(",",c)[i]
                bb = read_pdf_online(batch_url)
                data=f'{data}\nFile Name URL ({batch_url}):\n{bb}'
        except Exception as e:
            print(e)
            #data=f'{data}\nError reading URL ({batch_url})'
            
    if directory:
        for ea in directory:
            print(ea)
        
    if pdf_url.startswith("http"):
        print("PDF_URL")
        out = read_pdf_online(pdf_url)
        data=out
    if url.startswith("http"):
        val, out = find_all(url)
        if not val:
            data="Error"
            rawp = str(out)
        else:
            data=out
    if files:
        for i, file in enumerate(files):
            try: 
                print (file)
                if file.endswith(".pdf"):
                    zz=read_pdf(file)
                    print (zz)
                    data=f'{data}\nFile Name ({file}):\n{zz}'
                elif file.endswith(".txt"):
                    zz=read_txt(file)
                    print (zz)
                    data=f'{data}\nFile Name ({file}):\n{zz}'                
            except Exception as e:
                data=f'{data}\nError opening File Name ({file})'                
                print (e) 
    if data != "Error" and data != "":
        print(inp)
        out = str(data)
        rl = len(out)
        print(f'rl:: {rl}')
        c=1
        for i in str(out):
            if i == " " or i=="," or i=="\n":
                c +=1
        print (f'c:: {c}')
        json_out = compress_data(c,inp,out)  
        out = str(json_out)
        try:
            json_out=format_json(json_out)
        except Exception as e:
            print (e)
        chart_out = get_chart(str(json_out))
        chart_html=mm(chart_out)
        print(chart_out)
    else:
        rawp = "Provide a valid data source"
    history.clear()
    history.append((inp,rawp))
    yield "", history,chart_html,chart_out,json_out

#################################
def clear_fn():
    return "",[(None,None)]

with gr.Blocks() as app:
    gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3>""")
    chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True)
    with gr.Row():
        with gr.Column(scale=3):
            prompt=gr.Textbox(label = "Instructions (optional)")
        with gr.Column(scale=1):
            button=gr.Button()
        
        #models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
    with gr.Row():
        stop_button=gr.Button("Stop")
        clear_btn = gr.Button("Clear")
    with gr.Row():
        with gr.Tab("Text"):
            data=gr.Textbox(label="Input Data (paste text)", lines=6)
        with gr.Tab("File"):
            file=gr.Files(label="Input File(s) (.pdf .txt)")
        with gr.Tab("Folder"):
            directory=gr.File(label="Folder", file_count='directory')            
        with gr.Tab("Raw HTML"):
            url = gr.Textbox(label="URL")
        with gr.Tab("PDF URL"):
            pdf_url = gr.Textbox(label="PDF URL")       
        with gr.Tab("PDF Batch"):
            pdf_batch = gr.Textbox(label="PDF URL Batch (comma separated)")
    m_box=gr.HTML()
    e_box=gr.Textbox()
    
    json_out=gr.JSON()
    #text=gr.JSON()
    #inp_query.change(search_models,inp_query,models_dd)
    clear_btn.click(clear_fn,None,[prompt,chatbot])
    
    #go=button.click(summarize,[prompt,chatbot,report_check,chart_check,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,e_box,json_out])
    go=button.click(summarize,[prompt,chatbot,report_check,chart_check,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,m_box,e_box,json_out])
    
    stop_button.click(None,None,None,cancels=[go])
app.queue(default_concurrency_limit=20).launch(show_api=False)