Spaces:
Running
Running
File size: 18,795 Bytes
585747f ae02035 ae8f10f cdf5a0b fe88e4d cdf5a0b fe88e4d cdf5a0b 585747f 32e4ce7 cdf5a0b c875e8e 5ef0a00 f0505e9 5ef0a00 fc3180c e9e3c58 6aafdb9 ae8f10f 32e4ce7 ae8f10f 137b000 1dd0c66 f59ebbe cdf5a0b d5dd907 cdf5a0b 20f4295 73c565e cdf5a0b bbf23c6 cdf5a0b efafbe1 cdf5a0b bbf23c6 cdf5a0b bbf23c6 cdf5a0b bbf23c6 cdf5a0b bbf23c6 cdf5a0b bbf23c6 cdf5a0b bbf23c6 5e5e80d 20f4295 bbf23c6 cdf5a0b bbf23c6 6a73380 20f4295 bbf23c6 cdf5a0b bc4d005 28d57c3 bc4d005 0a1d49f 864e822 bdad755 bc4d005 28d57c3 bc4d005 b4d4fe4 bc4d005 cdf5a0b 9c56a0c b4d4fe4 efafbe1 cdf5a0b f59ebbe 0406768 f59ebbe 0406768 f59ebbe 0406768 4aa038c f59ebbe 0406768 f59ebbe 0406768 6aefd1f 767f570 864e822 5ef0a00 1898405 cdf5a0b 6aefd1f cdf5a0b c17440a 85c4e8a f59ebbe 4aa038c f59ebbe cdf5a0b 85c4e8a 0406768 fe64ad5 fc3180c f59ebbe cdf5a0b b4d4fe4 cdf5a0b ee43938 efafbe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import gradio as gr
import base64
import random
import gradio as gr
#import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
from pypdf import PdfReader
import uuid
#from query import tasks
from gradio_client import Client
from agent import (
PREFIX,
GET_CHART,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
api=HfApi()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def sort_fn(inp):
client_sort = Client("Omnibus/sort_document")
sen,nouns = client_sort.predict(
f"{inp}", # str in 'Paste Text' Textbox component
api_name="/sort_doc"
)
return nouns
def find_all(url):
return_list=[]
print (url)
#if action_input in query.tasks:
print (f"trying URL:: {url}")
try:
if url != "" and url != None:
out = []
source = requests.get(url)
#source = urllib.request.urlopen(url).read()
soup = bs4.BeautifulSoup(source.content,'lxml')
rawp=(f'RAW TEXT RETURNED: {soup.text}')
cnt=0
cnt+=len(rawp)
out.append(rawp)
out.append("HTML fragments: ")
q=("a","p","span","content","article")
for p in soup.find_all("a"):
out.append([{"LINK TITLE":p.get('title'),"URL":p.get('href'),"STRING":p.string}])
print(rawp)
return True, rawp
else:
return False, "Enter Valid URL"
except Exception as e:
print (e)
return False, f'Error: {e}'
#else:
# history = "observation: The search query I used did not return a valid response"
return "MAIN", None, history, task
FIND_KEYWORDS="""Find keywords from the dictionary of provided keywords that are relevant to the users query.
Return the keyword:value pairs from the list in the form of a JSON file output.
dictionary:
{keywords}
user query:
"""
def find_keyword_fn(c,inp,data):
data=str(data)
seed=random.randint(1,1000000000)
divr=int(c)/20000
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
out = []
s=0
e=chunk
print(f'e:: {e}')
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = data[s:e]
resp = run_gpt(
FIND_KEYWORDS,
stop_tokens=[],
max_tokens=8192,
seed=seed,
keywords=data,
).strip("\n")
out.append(resp)
#new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk
return out
def read_txt(txt_path):
text=""
with open(txt_path,"r") as f:
text = f.read()
f.close()
print (text)
return text
def read_pdf(pdf_path):
text=""
reader = PdfReader(f'{pdf_path}')
number_of_pages = len(reader.pages)
for i in range(number_of_pages):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print (text)
return text
error_box=[]
def read_pdf_online(url):
uid=uuid.uuid4()
print(f"reading {url}")
response = requests.get(url, stream=True)
print(response.status_code)
text=""
#################
#####################
try:
if response.status_code == 200:
with open("test.pdf", "wb") as f:
f.write(response.content)
#f.close()
#out = Path("./data.pdf")
#print (out)
reader = PdfReader("test.pdf")
number_of_pages = len(reader.pages)
print(number_of_pages)
for i in range(number_of_pages):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print(f"PDF_TEXT:: {text}")
return text
else:
text = response.status_code
error_box.append(url)
print(text)
return text
except Exception as e:
print (e)
return e
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt_no_prefix(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
try:
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = prompt_template.format(**prompt_kwargs)
#if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
#if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
except Exception as e:
print(f'no_prefix_error:: {e}')
return "Error"
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose="Compile the provided data and complete the users task"
) + prompt_template.format(**prompt_kwargs)
#if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge="",
history=hist,
).strip("\n")
out.append(resp)
#new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk
return out
def compress_data_og(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history=hist,
).strip("\n")
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
'''
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history="All data has been recieved.",
)'''
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def get_chart(inp):
seed=random.randint(1,1000000000)
try:
resp = run_gpt_no_prefix(
GET_CHART,
stop_tokens=[],
max_tokens=8192,
seed=seed,
inp=inp,
).strip("\n")
print(resp)
except Exception as e:
print(f'Error:: {e}')
resp = e
return resp
def format_json(inp):
print("FORMATTING:::")
print(type(inp))
print("###########")
print(inp)
print("###########")
print("###########")
new_str=""
matches=["```","#","//"]
for i,line in enumerate(inp):
line = line.strip()
print(line)
#if not any(x in line for x in matches):
new_str+=line.strip("\n").strip("```").strip("#").strip("//")
print("###########")
print("###########")
#inp = inp.strip("<\s>")
new_str=new_str.strip("</s>")
out_json=eval(new_str)
print(out_json)
print("###########")
print("###########")
return out_json
this=["1.25"]
css="""
#wrap { width: 100%; height: 100%; padding: 0; overflow: auto; }
#frame { width: 100%; border: 1px solid black; }
#frame { zoom: $ZOOM; -moz-transform: scale($ZOOM); -moz-transform-origin: 0 0; }
"""
def mm(graph,zoom):
code_out=""
for ea in graph.split("\n"):
code=ea.strip().strip("\n")
code_out+=code
#out_html=f'''<div><iframe src="https://omnibus-mermaid-script.static.hf.space/index.html?mermaid={code_out}&rand={random.randint(1,1111111111)}" height="500" width="500"></iframe></div>'''
#url=f"https://omnibus-mermaid-script.static.hf.space/index.html?mermaid={code_out}"
url=f"https://omnibus-text-to-chart.hf.space/file=merm.html?mermaid={code_out}"
out_html=f'''<div id="wrap" style="width: 100%; height: 100%;max-height:600px; padding: 0; overflow: auto;"><iframe id="frame" src="{url}" style="width:100%; height:600px; border: 1px solid black; zoom: {str(zoom)}; -moz-transform: scale({str(zoom)}); -moz-transform-origin: 0 0;" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe></div>'''
return out_html,url
def summarize(inp,history,data=None,files=None,directory=None,url=None,pdf_url=None,pdf_batch=None):
json_box=[]
chart_out=""
if inp == "":
inp = "Process this data"
history.clear()
history = [(inp,"Working on it...")]
yield "",history,chart_out,chart_out,json_box,""
if pdf_batch.startswith("http"):
lab="PDF Batch"
c=0
data=""
for i in str(pdf_batch):
if i==",":
c+=1
print (f'c:: {c}')
try:
for i in range(c+1):
batch_url = pdf_batch.split(",",c)[i]
bb = read_pdf_online(batch_url)
data=f'{data}\nFile Name URL ({batch_url}):\n{bb}'
except Exception as e:
print(e)
#data=f'{data}\nError reading URL ({batch_url})'
if directory:
lab="Directory"
for ea in directory:
print(ea)
if pdf_url.startswith("http"):
lab="PDF URL"
print("PDF_URL")
out = read_pdf_online(pdf_url)
data=out
if url.startswith("http"):
lab="Raw HTML"
val, out = find_all(url)
if not val:
data="Error"
rawp = str(out)
else:
data=out
if files:
lab="Files"
for i, file in enumerate(files):
try:
print (file)
if file.endswith(".pdf"):
zz=read_pdf(file)
print (zz)
data=f'{data}\nFile Name ({file}):\n{zz}'
elif file.endswith(".txt"):
zz=read_txt(file)
print (zz)
data=f'{data}\nFile Name ({file}):\n{zz}'
except Exception as e:
data=f'{data}\nError opening File Name ({file})'
print (e)
if data != "Error" and data != "":
history.clear()
history = [(inp,f"Data: Loaded, processing...")]
yield "",history,chart_out,chart_out,json_box,""
print(inp)
out = str(data)
rl = len(out)
print(f'rl:: {rl}')
c=1
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
json_out = compress_data(c,inp,out)
out = str(json_out)
try:
json_out=format_json(json_out)
except Exception as e:
print (e)
history.clear()
history = [(inp,"Building Chart...")]
yield "",history,chart_out,chart_out,json_out,""
chart_out = get_chart(str(json_out))
chart_list=chart_out.split("\n")
go=True
cnti=1
line_out=""
for ii, line in enumerate(chart_list):
if go:
line=line.strip().replace('"',"")
if "```" in chart_list[ii]:
while True:
line_out+=chart_list[ii+cnti].strip().strip("\n").replace('"',"")
if not line_out.endswith(";"):
line_out+=";"
line_out+="\n"
cnti+=1
if "```" in chart_list[ii+cnti]:
go=False
break
chart_html,chart_url=mm(line_out,1)
#print(chart_out)
else:
rawp = "Provide a valid data source"
history.clear()
history.append((inp,chart_out))
yield "", history,chart_html,line_out,json_out,chart_url
#################################
def clear_fn():
return "",[(None,None)]
def create_image(url):
#source = requests.get(url)
#source = urllib.request.urlopen(url).read()
#soup = bs4.BeautifulSoup(source.content,'lxml')
#rawp=(f'RAW TEXT RETURNED: {soup.text}')
#cnt=0
#cnt+=len(rawp)
#out.append(rawp)
#out.append("HTML fragments: ")
#q=("a","p","span","content","article")
#out=[]
#for b in soup.find_all("div"):
# for p in b.find_all("pre, {'class': 'mermaid'}"):
# out.append(p.find('svg'))
print(url)
#out.append(p.string)
with open("tmp.svg","w") as svg:
svg.write(url)
return "tmp.svg"
score_js="""
function(text_input) {
console.log(text_input);
const iframe = document.getElementById("frame").contentWindow.document.getElementById('chart').innerHTML;
console.log(iframe);
return [iframe];
}
"""
def zoom_update(inp):
this.clear()
this.append(str(inp))
return gr.update()
with gr.Blocks() as app:
gr.HTML("""<center><h1>Text -to- Chart</h1><h3>Mixtral 8x7B</h3>""")
chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True)
with gr.Row():
with gr.Column(scale=3):
prompt=gr.Textbox(label = "Instructions (optional)")
with gr.Column(scale=1):
button=gr.Button()
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
with gr.Tab("Text"):
data=gr.Textbox(label="Input Data (paste text)", lines=6)
with gr.Tab("File"):
file=gr.Files(label="Input File(s) (.pdf .txt)")
with gr.Tab("Folder"):
directory=gr.File(label="Folder", file_count='directory')
with gr.Tab("Raw HTML"):
url = gr.Textbox(label="URL")
with gr.Tab("PDF URL"):
pdf_url = gr.Textbox(label="PDF URL")
with gr.Tab("PDF Batch"):
pdf_batch = gr.Textbox(label="PDF URL Batch (comma separated)")
m_box=gr.HTML()
zoom_btn=gr.Slider(label="Zoom",step=0.01,minimum=0.1,maximum=20,value=1,interactive=True)
e_box=gr.Textbox(interactive=True)
with gr.Row():
upd_button=gr.Button("Update Chart")
create_im=gr.Button("Create Image")
svg_img=gr.Image()
url_box=gr.Textbox(interactive=True)
json_out=gr.JSON()
#text=gr.JSON()
#get_score.click(return_score,score,[score],_js=score_js)
score=gr.Textbox()
def return_score(text):
print(text)
return text
create_im.click(return_score,score,[score],_js=score_js).then(create_image,score,svg_img)
#zoom_btn.change(zoom_update,zoom_btn,None)
upd_button.click(mm,[e_box,zoom_btn],[m_box,url_box])
#inp_query.change(search_models,inp_query,models_dd)
clear_btn.click(clear_fn,None,[prompt,chatbot])
#go=button.click(summarize,[prompt,chatbot,report_check,chart_check,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,e_box,json_out])
go=button.click(summarize,[prompt,chatbot,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,m_box,e_box,json_out,url_box])
stop_button.click(None,None,None,cancels=[go])
#app.queue(default_concurrency_limit=20).launch(show_api=False)
app.queue(concurrency_count=20).launch(show_api=False)
|