Omnibus commited on
Commit
e4e0162
·
verified ·
1 Parent(s): 4c1936b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +137 -0
app.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_client import Client
3
+ from huggingface_hub import InferenceClient
4
+ import random
5
+ #ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
6
+
7
+ models=[
8
+ "google/gemma-7b",
9
+ "google/gemma-7b-it",
10
+ "google/gemma-2b",
11
+ "google/gemma-2b-it"
12
+ "meta-llama/Llama-2-7b-chat-hf",
13
+ "codellama/CodeLlama-70b-Instruct-hf",
14
+ "openchat/openchat-3.5-0106",
15
+ "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
16
+ "mistralai/Mixtral-8x7B-Instruct-v0.1",
17
+ "mistralai/Mixtral-8x7B-Instruct-v0.2"
18
+ ]
19
+ '''clients=[
20
+ InferenceClient(models[0]),
21
+ InferenceClient(models[1]),
22
+ InferenceClient(models[2]),
23
+ InferenceClient(models[3]),
24
+ ]'''
25
+
26
+ def format_prompt(message, history):
27
+ prompt = ""
28
+ if history:
29
+ #<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
30
+ for user_prompt, bot_response in history:
31
+ prompt += f"{user_prompt}\n"
32
+ print(prompt)
33
+ prompt += f"{bot_response}\n"
34
+ print(prompt)
35
+ prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
36
+ print(prompt)
37
+ return prompt
38
+
39
+ def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p):
40
+ #token max=8192
41
+ client=clients[int(client_choice)-1]
42
+ if not history:
43
+ history = []
44
+ hist_len=0
45
+ if history:
46
+ hist_len=len(history)
47
+ print(hist_len)
48
+ in_len=len(system_prompt+prompt)+hist_len
49
+ print("\n#########"+in_len)
50
+ if (in_len+tokens) > 8000:
51
+ yield [(prompt,"Wait. I need to compress our Chat history...")]
52
+ history=compress_history(history,client_choice,seed,temp,tokens,top_p,rep_p)
53
+ yield [(prompt,"History has been compressed, processing request...")]
54
+
55
+ generate_kwargs = dict(
56
+ temperature=temp,
57
+ max_new_tokens=tokens,
58
+ top_p=top_p,
59
+ repetition_penalty=rep_p,
60
+ do_sample=True,
61
+ seed=seed,
62
+ )
63
+ #formatted_prompt=prompt
64
+ formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
65
+
66
+
67
+
68
+
69
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
70
+ output = ""
71
+
72
+ for response in stream:
73
+ output += response.token.text
74
+ yield [(prompt,output)]
75
+ history.append((prompt,output))
76
+ yield history
77
+
78
+ def clear_fn():
79
+ return None,None,None
80
+ rand_val=random.randint(1,1111111111111111)
81
+ def check_rand(inp,val):
82
+ if inp==True:
83
+ return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
84
+ else:
85
+ return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
86
+
87
+ with gr.Blocks() as app:
88
+ gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
89
+ with gr.Row():
90
+ chat_a = gr.Chatbot(height=500)
91
+ chat_b = gr.Chatbot(height=500)
92
+ with gr.Row():
93
+ chat_c = gr.Chatbot(height=500)
94
+ chat_d = gr.Chatbot(height=500)
95
+ with gr.Group():
96
+ with gr.Row():
97
+ with gr.Column(scale=3):
98
+ inp = gr.Textbox(label="Prompt")
99
+ sys_inp = gr.Textbox(label="System Prompt (optional)")
100
+ with gr.Row():
101
+ with gr.Column(scale=2):
102
+ btn = gr.Button("Chat")
103
+ with gr.Column(scale=1):
104
+ with gr.Group():
105
+ stop_btn=gr.Button("Stop")
106
+ clear_btn=gr.Button("Clear")
107
+ client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
108
+
109
+ with gr.Column(scale=1):
110
+ with gr.Group():
111
+ rand = gr.Checkbox(label="Random Seed", value=True)
112
+ seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
113
+ tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
114
+ temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
115
+ top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
116
+ rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
117
+ with gr.Accordion(label="Screenshot",open=False):
118
+ with gr.Row():
119
+ with gr.Column(scale=3):
120
+ im_btn=gr.Button("Screenshot")
121
+ img=gr.Image(type='filepath')
122
+ with gr.Column(scale=1):
123
+ with gr.Row():
124
+ im_height=gr.Number(label="Height",value=5000)
125
+ im_width=gr.Number(label="Width",value=500)
126
+ wait_time=gr.Number(label="Wait Time",value=3000)
127
+ theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
128
+ chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
129
+
130
+
131
+
132
+ #im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
133
+ #chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
134
+ #go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
135
+ #stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
136
+ #clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b])
137
+ app.queue(default_concurrency_limit=10).launch()