File size: 4,982 Bytes
621f0bd
10fa1e9
 
 
 
 
621f0bd
 
10fa1e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from Prediction import *
import os
from datetime import datetime


examples = []
if os.path.exists("assets/examples.txt"):
    with open("assets/examples.txt", "r", encoding="utf8") as file:
        for sentence in file:
            sentence = sentence.strip()
            examples.append(sentence)
else:
    examples = [
        "Games of the imagination teach us actions have consequences in a realm that can be reset.",
        "But New Jersey farmers are retiring and all over the state, development continues to push out dwindling farmland.",
        "He also is the Head Designer of The Design Trust so-to-speak, besides his regular job ..."
        ]

device = torch.device('cpu')
tokenizer = BertTokenizer.from_pretrained("Oliver12315/Brand_Tone_of_Voice")
model = BertForSequenceClassification.from_pretrained("Oliver12315/Brand_Tone_of_Voice")
model = model.to(device)


def single_sentence(sentence):
    predictions = predict_single(sentence, tokenizer, model, device)
    predictions.sort(reverse=True)
    return list(zip(LABEL_COLUMNS, predictions))

def csv_process(csv_file, attr="content"):
    current_time = datetime.now()
    formatted_time = current_time.strftime("%Y_%m_%d_%H_%M_%S")
    data = pd.read_csv(csv_file.name)
    data = data.reset_index()
    os.makedirs('output', exist_ok=True)
    outputs = []
    predictions = predict_csv(data, attr, tokenizer, model, device)
    output_path = f"output/prediction_Brand_Tone_of_Voice_{formatted_time}.csv"
    predictions.to_csv(output_path)
    outputs.append(output_path)
    return outputs


my_theme = gr.Theme.from_hub("JohnSmith9982/small_and_pretty")
with gr.Blocks(theme=my_theme, title='Brand_Tone_of_Voice_demo') as demo:
    gr.HTML(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
        <a href="https://github.com/xxx" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
        </a>
        <div>
            <h1 >Place the title of the paper here</h1>
            <h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;>
                <a href="https://arxiv.org/abs/xx.xx"><img src="https://img.shields.io/badge/Arxiv-xx.xx-red"></a>
                <a href='https://huggingface.co/spaces/Oliver12315/Brand_Tone_of_Voice_demo'><img src='https://img.shields.io/badge/Project_Page-Oliver12315/Brand_Tone_of_Voice_demo' alt='Project Page'></a>
                <a href='https://github.com'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
            </div>
        </div>
        </div>
        """)

    with gr.Tab("Single Sentence"):
        with gr.Row():
            tbox_input = gr.Textbox(label="Input",
                                    info="Please input a sentence here:")
            gr.Markdown("""
                # Detailed information about our model:
                ...
                """)
        tab_output = gr.DataFrame(label='Predictions:', 
                                  headers=["Label", "Probability"],
                                  datatype=["str", "number"],
                                  interactive=False)
        with gr.Row():
            button_ss = gr.Button("Submit", variant="primary")
            button_ss.click(fn=single_sentence, inputs=[tbox_input], outputs=[tab_output])
            gr.ClearButton([tbox_input, tab_output])

        gr.Examples(
            examples=examples,
            inputs=tbox_input,
            examples_per_page=len(examples)
        )

    with gr.Tab("Csv File"):
        with gr.Row():
            csv_input = gr.File(label="CSV File:",
                                file_types=['.csv'],
                                file_count="single"
                                )
            csv_output = gr.File(label="Predictions:")

        with gr.Row():
            button = gr.Button("Submit", variant="primary")
            button.click(fn=csv_process, inputs=[csv_input], outputs=[csv_output])
            gr.ClearButton([csv_input, csv_output])

        gr.Markdown("## Examples \n The incoming CSV must include the ``content`` field, which represents the text that needs to be predicted!")
        gr.DataFrame(label='Csv input format:',
                    value=[[i, examples[i]] for i in range(len(examples))],
                    headers=["index", "content"],
                    datatype=["number","str"],
                    interactive=False
                    )

    with gr.Tab("Readme"):
        gr.Markdown(
            """
            # Paper Name

            # Authors

            + First author
            + Corresponding author
            
            # Detailed Information

            ...
            """
        )
demo.launch()