Spaces:
Running
Running
File size: 6,321 Bytes
c56c253 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from speaker_encoder.params_model import *
from speaker_encoder.params_data import *
from scipy.interpolate import interp1d
from sklearn.metrics import roc_curve
from torch.nn.utils import clip_grad_norm_
from scipy.optimize import brentq
from torch import nn
import numpy as np
import torch
class SpeakerEncoder(nn.Module):
def __init__(self, device, loss_device):
super().__init__()
self.loss_device = loss_device
# Network defition
self.lstm = nn.LSTM(input_size=mel_n_channels, # 40
hidden_size=model_hidden_size, # 256
num_layers=model_num_layers, # 3
batch_first=True).to(device)
self.linear = nn.Linear(in_features=model_hidden_size,
out_features=model_embedding_size).to(device)
self.relu = torch.nn.ReLU().to(device)
# Cosine similarity scaling (with fixed initial parameter values)
self.similarity_weight = nn.Parameter(torch.tensor([10.])).to(loss_device)
self.similarity_bias = nn.Parameter(torch.tensor([-5.])).to(loss_device)
# Loss
self.loss_fn = nn.CrossEntropyLoss().to(loss_device)
def do_gradient_ops(self):
# Gradient scale
self.similarity_weight.grad *= 0.01
self.similarity_bias.grad *= 0.01
# Gradient clipping
clip_grad_norm_(self.parameters(), 3, norm_type=2)
def forward(self, utterances, hidden_init=None):
"""
Computes the embeddings of a batch of utterance spectrograms.
:param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape
(batch_size, n_frames, n_channels)
:param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers,
batch_size, hidden_size). Will default to a tensor of zeros if None.
:return: the embeddings as a tensor of shape (batch_size, embedding_size)
"""
# Pass the input through the LSTM layers and retrieve all outputs, the final hidden state
# and the final cell state.
out, (hidden, cell) = self.lstm(utterances, hidden_init)
# We take only the hidden state of the last layer
embeds_raw = self.relu(self.linear(hidden[-1]))
# L2-normalize it
embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
return embeds
def similarity_matrix(self, embeds):
"""
Computes the similarity matrix according the section 2.1 of GE2E.
:param embeds: the embeddings as a tensor of shape (speakers_per_batch,
utterances_per_speaker, embedding_size)
:return: the similarity matrix as a tensor of shape (speakers_per_batch,
utterances_per_speaker, speakers_per_batch)
"""
speakers_per_batch, utterances_per_speaker = embeds.shape[:2]
# Inclusive centroids (1 per speaker). Cloning is needed for reverse differentiation
centroids_incl = torch.mean(embeds, dim=1, keepdim=True)
centroids_incl = centroids_incl.clone() / torch.norm(centroids_incl, dim=2, keepdim=True)
# Exclusive centroids (1 per utterance)
centroids_excl = (torch.sum(embeds, dim=1, keepdim=True) - embeds)
centroids_excl /= (utterances_per_speaker - 1)
centroids_excl = centroids_excl.clone() / torch.norm(centroids_excl, dim=2, keepdim=True)
# Similarity matrix. The cosine similarity of already 2-normed vectors is simply the dot
# product of these vectors (which is just an element-wise multiplication reduced by a sum).
# We vectorize the computation for efficiency.
sim_matrix = torch.zeros(speakers_per_batch, utterances_per_speaker,
speakers_per_batch).to(self.loss_device)
mask_matrix = 1 - np.eye(speakers_per_batch, dtype=np.int)
for j in range(speakers_per_batch):
mask = np.where(mask_matrix[j])[0]
sim_matrix[mask, :, j] = (embeds[mask] * centroids_incl[j]).sum(dim=2)
sim_matrix[j, :, j] = (embeds[j] * centroids_excl[j]).sum(dim=1)
## Even more vectorized version (slower maybe because of transpose)
# sim_matrix2 = torch.zeros(speakers_per_batch, speakers_per_batch, utterances_per_speaker
# ).to(self.loss_device)
# eye = np.eye(speakers_per_batch, dtype=np.int)
# mask = np.where(1 - eye)
# sim_matrix2[mask] = (embeds[mask[0]] * centroids_incl[mask[1]]).sum(dim=2)
# mask = np.where(eye)
# sim_matrix2[mask] = (embeds * centroids_excl).sum(dim=2)
# sim_matrix2 = sim_matrix2.transpose(1, 2)
sim_matrix = sim_matrix * self.similarity_weight + self.similarity_bias
return sim_matrix
def loss(self, embeds):
"""
Computes the softmax loss according the section 2.1 of GE2E.
:param embeds: the embeddings as a tensor of shape (speakers_per_batch,
utterances_per_speaker, embedding_size)
:return: the loss and the EER for this batch of embeddings.
"""
speakers_per_batch, utterances_per_speaker = embeds.shape[:2]
# Loss
sim_matrix = self.similarity_matrix(embeds)
sim_matrix = sim_matrix.reshape((speakers_per_batch * utterances_per_speaker,
speakers_per_batch))
ground_truth = np.repeat(np.arange(speakers_per_batch), utterances_per_speaker)
target = torch.from_numpy(ground_truth).long().to(self.loss_device)
loss = self.loss_fn(sim_matrix, target)
# EER (not backpropagated)
with torch.no_grad():
inv_argmax = lambda i: np.eye(1, speakers_per_batch, i, dtype=np.int)[0]
labels = np.array([inv_argmax(i) for i in ground_truth])
preds = sim_matrix.detach().cpu().numpy()
# Snippet from https://yangcha.github.io/EER-ROC/
fpr, tpr, thresholds = roc_curve(labels.flatten(), preds.flatten())
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
return loss, eer |