Spaces:
Sleeping
Sleeping
import argparse | |
import functools | |
import os | |
from faster_whisper import WhisperModel | |
from utils.utils import print_arguments, add_arguments | |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' | |
parser = argparse.ArgumentParser(description=__doc__) | |
add_arg = functools.partial(add_arguments, argparser=parser) | |
add_arg("audio_path", type=str, default="dataset/test.wav", help="") | |
add_arg("model_path", type=str, default="models/whisper-tiny-finetune-ct2", help="") | |
add_arg("language", type=str, default="zh", help="") | |
add_arg("use_gpu", type=bool, default=True, help="") | |
add_arg("use_int8", type=bool, default=False, help="int8") | |
add_arg("beam_size", type=int, default=10, help="") | |
add_arg("num_workers", type=int, default=1, help="") | |
add_arg("vad_filter", type=bool, default=False, help="") | |
add_arg("local_files_only", type=bool, default=True, help="") | |
args = parser.parse_args() | |
print_arguments(args) | |
# | |
assert os.path.exists(args.model_path), f"{args.model_path}" | |
# | |
if args.use_gpu: | |
if not args.use_int8: | |
model = WhisperModel(args.model_path, device="cuda", compute_type="float16", num_workers=args.num_workers, | |
local_files_only=args.local_files_only) | |
else: | |
model = WhisperModel(args.model_path, device="cuda", compute_type="int8_float16", num_workers=args.num_workers, | |
local_files_only=args.local_files_only) | |
else: | |
model = WhisperModel(args.model_path, device="cpu", compute_type="int8", num_workers=args.num_workers, | |
local_files_only=args.local_files_only) | |
# | |
_, _ = model.transcribe("dataset/test.wav", beam_size=5) | |
# | |
segments, info = model.transcribe(args.audio_path, beam_size=args.beam_size, language=args.language, | |
vad_filter=args.vad_filter) | |
for segment in segments: | |
text = segment.text | |
print(f"[{round(segment.start, 2)} - {round(segment.end, 2)}]:{text}\n") | |