Spaces:
Running
Running
import os | |
import os | |
import shutil | |
from transformers import TrainerCallback, TrainingArguments, TrainerState, TrainerControl | |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR | |
# | |
class SavePeftModelCallback(TrainerCallback): | |
def on_save(self, | |
args: TrainingArguments, | |
state: TrainerState, | |
control: TrainerControl, | |
**kwargs, ): | |
if args.local_rank == 0 or args.local_rank == -1: | |
# | |
checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") | |
peft_model_dir = os.path.join(checkpoint_folder, "adapter_model") | |
kwargs["model"].save_pretrained(peft_model_dir) | |
peft_config_path = os.path.join(checkpoint_folder, "adapter_model/adapter_config.json") | |
peft_model_path = os.path.join(checkpoint_folder, "adapter_model/adapter_model.bin") | |
if not os.path.exists(peft_config_path): | |
os.remove(peft_config_path) | |
if not os.path.exists(peft_model_path): | |
os.remove(peft_model_path) | |
if os.path.exists(peft_model_dir): | |
shutil.rmtree(peft_model_dir) | |
# | |
best_checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-best") | |
# | |
if os.path.exists(state.best_model_checkpoint): | |
if os.path.exists(best_checkpoint_folder): | |
shutil.rmtree(best_checkpoint_folder) | |
shutil.copytree(state.best_model_checkpoint, best_checkpoint_folder) | |
print(f"{state.best_model_checkpoint}{state.best_metric}") | |
return control | |