Spaces:
Sleeping
Sleeping
File size: 12,147 Bytes
6de3e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import json
import os
import random
import sys
from typing import List
import librosa
import numpy as np
import soundfile
from torch.utils.data import Dataset
from tqdm import tqdm
from utils.binary import DatasetReader
class CustomDataset(Dataset):
def __init__(self,
data_list_path,
processor,
mono=True,
language=None,
timestamps=False,
sample_rate=16000,
min_duration=0.5,
max_duration=30,
augment_config_path=None):
"""
Args:
data_list_path:
processor: Whisper
mono: True
language:
timestamps:
sample_rate: 16000
min_duration: 0.5s
max_duration: 30s
augment_config_path:
"""
super(CustomDataset, self).__init__()
assert min_duration >= 0.5, f"min_duration 0.5:{min_duration}"
assert max_duration <= 30, f"max_duration 30:{max_duration}"
self.data_list_path = data_list_path
self.processor = processor
self.data_list_path = data_list_path
self.sample_rate = sample_rate
self.mono = mono
self.language = language
self.timestamps = timestamps
self.min_duration = min_duration
self.max_duration = max_duration
self.vocab = self.processor.tokenizer.get_vocab()
self.timestamp_begin = self.vocab['<|notimestamps|>'] + 1
self.startoftranscript = self.vocab['<|startoftranscript|>']
self.endoftext = self.vocab['<|endoftext|>']
self.nocaptions = self.vocab['<|nocaptions|>']
self.data_list: List[dict] = []
#
self._load_data_list()
#
self.augment_configs = None
self.noises_path = None
self.speed_rates = None
if augment_config_path:
with open(augment_config_path, 'r', encoding='utf-8') as f:
self.augment_configs = json.load(f)
#
def _load_data_list(self):
if self.data_list_path.endswith(".header"):
#
self.dataset_reader = DatasetReader(data_header_path=self.data_list_path,
min_duration=self.min_duration,
max_duration=self.max_duration)
self.data_list = self.dataset_reader.get_keys()
else:
#
with open(self.data_list_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
self.data_list = []
for line in tqdm(lines, desc=''):
if isinstance(line, str):
line = json.loads(line)
if not isinstance(line, dict): continue
#
if line["duration"] < self.min_duration:
continue
if self.max_duration != -1 and line["duration"] > self.max_duration:
continue
self.data_list.append(dict(line))
#
def _get_list_data(self, idx):
if self.data_list_path.endswith(".header"):
data_list = self.dataset_reader.get_data(self.data_list[idx])
else:
data_list = self.data_list[idx]
#
audio_file = data_list["audio"]['path']
transcript = data_list["sentences"] if self.timestamps else data_list["sentence"]
language = data_list["language"] if 'language' in data_list.keys() else None
if 'start_time' not in data_list["audio"].keys():
sample, sample_rate = soundfile.read(audio_file, dtype='float32')
else:
start_time, end_time = data_list["audio"]["start_time"], data_list["audio"]["end_time"]
#
sample, sample_rate = self.slice_from_file(audio_file, start=start_time, end=end_time)
sample = sample.T
#
if self.mono:
sample = librosa.to_mono(sample)
#
if self.augment_configs:
sample, sample_rate = self.augment(sample, sample_rate)
#
if self.sample_rate != sample_rate:
sample = self.resample(sample, orig_sr=sample_rate, target_sr=self.sample_rate)
return sample, sample_rate, transcript, language
def _load_timestamps_transcript(self, transcript: List[dict]):
assert isinstance(transcript, list), f"transcript list:{type(transcript)}"
data = dict()
labels = self.processor.tokenizer.prefix_tokens[:3]
for t in transcript:
#
start = t['start'] if round(t['start'] * 100) % 2 == 0 else t['start'] + 0.01
start = self.timestamp_begin + round(start * 100) // 2
end = t['end'] if round(t['end'] * 100) % 2 == 0 else t['end'] - 0.01
end = self.timestamp_begin + round(end * 100) // 2
label = self.processor(text=t['text']).input_ids[4:-1]
labels.extend([start])
labels.extend(label)
labels.extend([end])
data['labels'] = labels + [self.endoftext]
return data
def __getitem__(self, idx):
try:
#
sample, sample_rate, transcript, language = self._get_list_data(idx=idx)
#
self.processor.tokenizer.set_prefix_tokens(language=language if language is not None else self.language)
if len(transcript) > 0:
#
if self.timestamps:
data = self._load_timestamps_transcript(transcript=transcript)
#
data["input_features"] = self.processor(audio=sample, sampling_rate=self.sample_rate).input_features
else:
#
data = self.processor(audio=sample, sampling_rate=self.sample_rate, text=transcript)
else:
#
data = self.processor(audio=sample, sampling_rate=self.sample_rate)
data['labels'] = [self.startoftranscript, self.nocaptions, self.endoftext]
return data
except Exception as e:
print(f'idx:{idx} error - {e}', file=sys.stderr)
return self.__getitem__(random.randint(0, self.__len__() - 1))
def __len__(self):
return len(self.data_list)
#
@staticmethod
def slice_from_file(file, start, end):
sndfile = soundfile.SoundFile(file)
sample_rate = sndfile.samplerate
duration = round(float(len(sndfile)) / sample_rate, 3)
start = round(start, 3)
end = round(end, 3)
#
if start < 0.0: start += duration
if end < 0.0: end += duration
#
if start < 0.0: start = 0.0
if end > duration: end = duration
if end < 0.0:
raise ValueError("(%f s)" % end)
if start > end:
raise ValueError("(%f s)(%f s)" % (start, end))
start_frame = int(start * sample_rate)
end_frame = int(end * sample_rate)
sndfile.seek(start_frame)
sample = sndfile.read(frames=end_frame - start_frame, dtype='float32')
return sample, sample_rate
#
def augment(self, sample, sample_rate):
for config in self.augment_configs:
if config['type'] == 'speed' and random.random() < config['prob']:
if self.speed_rates is None:
min_speed_rate, max_speed_rate, num_rates = config['params']['min_speed_rate'], \
config['params']['max_speed_rate'], config['params']['num_rates']
self.speed_rates = np.linspace(min_speed_rate, max_speed_rate, num_rates, endpoint=True)
rate = random.choice(self.speed_rates)
sample = self.change_speed(sample, speed_rate=rate)
if config['type'] == 'shift' and random.random() < config['prob']:
min_shift_ms, max_shift_ms = config['params']['min_shift_ms'], config['params']['max_shift_ms']
shift_ms = random.randint(min_shift_ms, max_shift_ms)
sample = self.shift(sample, sample_rate, shift_ms=shift_ms)
if config['type'] == 'volume' and random.random() < config['prob']:
min_gain_dBFS, max_gain_dBFS = config['params']['min_gain_dBFS'], config['params']['max_gain_dBFS']
gain = random.randint(min_gain_dBFS, max_gain_dBFS)
sample = self.volume(sample, gain=gain)
if config['type'] == 'resample' and random.random() < config['prob']:
new_sample_rates = config['params']['new_sample_rates']
new_sample_rate = np.random.choice(new_sample_rates)
sample = self.resample(sample, orig_sr=sample_rate, target_sr=new_sample_rate)
sample_rate = new_sample_rate
if config['type'] == 'noise' and random.random() < config['prob']:
min_snr_dB, max_snr_dB = config['params']['min_snr_dB'], config['params']['max_snr_dB']
if self.noises_path is None:
self.noises_path = []
noise_dir = config['params']['noise_dir']
if os.path.exists(noise_dir):
for file in os.listdir(noise_dir):
self.noises_path.append(os.path.join(noise_dir, file))
noise_path = random.choice(self.noises_path)
snr_dB = random.randint(min_snr_dB, max_snr_dB)
sample = self.add_noise(sample, sample_rate, noise_path=noise_path, snr_dB=snr_dB)
return sample, sample_rate
#
@staticmethod
def change_speed(sample, speed_rate):
if speed_rate == 1.0:
return sample
if speed_rate <= 0:
raise ValueError("error")
old_length = sample.shape[0]
new_length = int(old_length / speed_rate)
old_indices = np.arange(old_length)
new_indices = np.linspace(start=0, stop=old_length, num=new_length)
sample = np.interp(new_indices, old_indices, sample).astype(np.float32)
return sample
#
@staticmethod
def shift(sample, sample_rate, shift_ms):
duration = sample.shape[0] / sample_rate
if abs(shift_ms) / 1000.0 > duration:
raise ValueError("shift_ms")
shift_samples = int(shift_ms * sample_rate / 1000)
if shift_samples > 0:
sample[:-shift_samples] = sample[shift_samples:]
sample[-shift_samples:] = 0
elif shift_samples < 0:
sample[-shift_samples:] = sample[:shift_samples]
sample[:-shift_samples] = 0
return sample
#
@staticmethod
def volume(sample, gain):
sample *= 10.**(gain / 20.)
return
#
@staticmethod
def resample(sample, orig_sr, target_sr):
sample = librosa.resample(sample, orig_sr=orig_sr, target_sr=target_sr)
return sample
#
def add_noise(self, sample, sample_rate, noise_path, snr_dB, max_gain_db=300.0):
noise_sample, sr = librosa.load(noise_path, sr=sample_rate)
#
target_db = -20
gain = min(max_gain_db, target_db - self.rms_db(sample))
sample *= 10. ** (gain / 20.)
#
sample_rms_db, noise_rms_db = self.rms_db(sample), self.rms_db(noise_sample)
noise_gain_db = min(sample_rms_db - noise_rms_db - snr_dB, max_gain_db)
noise_sample *= 10. ** (noise_gain_db / 20.)
#
if noise_sample.shape[0] < sample.shape[0]:
diff_duration = sample.shape[0] - noise_sample.shape[0]
noise_sample = np.pad(noise_sample, (0, diff_duration), 'wrap')
elif noise_sample.shape[0] > sample.shape[0]:
start_frame = random.randint(0, noise_sample.shape[0] - sample.shape[0])
noise_sample = noise_sample[start_frame:sample.shape[0] + start_frame]
sample += noise_sample
return sample
@staticmethod
def rms_db(sample):
mean_square = np.mean(sample ** 2)
return 10 * np.log10(mean_square)
|