Spaces:
Sleeping
Sleeping
File size: 2,015 Bytes
6de3e11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import argparse
import functools
import librosa
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from utils.utils import print_arguments, add_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("audio_path", type=str, default="dataset/test.wav", help="")
add_arg("model_path", type=str, default="models/whisper-tiny-finetune", help="")
add_arg("language", type=str, default="Oriya", help="")
add_arg("task", type=str, default="transcribe", choices=['transcribe', 'translate'], help="")
add_arg("local_files_only", type=bool, default=True, help="")
args = parser.parse_args()
print_arguments(args)
# Whisper
processor = WhisperProcessor.from_pretrained(args.model_path,
language=args.language,
task=args.task,
local_files_only=args.local_files_only)
forced_decoder_ids = processor.get_decoder_prompt_ids(language=args.language, task=args.task)
#
model = WhisperForConditionalGeneration.from_pretrained(args.model_path,
device_map="auto",
local_files_only=args.local_files_only).half()
model.eval()
#
sample, sr = librosa.load(args.audio_path, sr=16000)
duration = sample.shape[-1]/sr
assert duration < 30, f"This program is only suitable for inferring audio less than 30 seconds, the current audio {duration} seconds, use another inference program!"
#
input_features = processor(sample, sampling_rate=sr, return_tensors="pt", do_normalize=True).input_features.cuda().half()
#
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids, max_new_tokens=256)
#
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
print(f"result :{transcription}")
|