Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
FAQ_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
from PIL import Image | |
# from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
# from src.submission.submit import add_new_eval | |
# from src.tools.collections import update_collections | |
# from src.tools.plots import ( | |
# create_metric_plot_obj, | |
# create_plot_df, | |
# create_scores_df, | |
# ) | |
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf | |
import copy | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) | |
def add_average_col(df): | |
always_here_cols = [ | |
"Model", "Agent", "Opponent Model", "Opponent Agent" | |
] | |
desired_col = [i for i in list(df.columns) if i not in always_here_cols] | |
newdf = df[desired_col].mean(axis=1).round(3) | |
return newdf | |
gtbench_raw_data = dummydf() | |
gtbench_raw_data["Average"] = add_average_col(gtbench_raw_data) | |
column_to_move = "Average" | |
# Move the column to the desired index | |
gtbench_raw_data.insert( | |
4, column_to_move, gtbench_raw_data.pop(column_to_move)) | |
models = list(set(gtbench_raw_data['Model'])) | |
opponent_models = list(set(gtbench_raw_data['Opponent Model'])) | |
agents = list(set(gtbench_raw_data['Agent'])) | |
opponent_agents = list(set(gtbench_raw_data['Opponent Agent'])) | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
model1: list, | |
model2: list, | |
agent1: list, | |
agent2: list | |
): | |
filtered_df = select_columns(hidden_df, columns) | |
filtered_df = filter_model1(filtered_df, model1) | |
filtered_df = filter_model2(filtered_df, model2) | |
filtered_df = filter_agent1(filtered_df, agent1) | |
filtered_df = filter_agent2(filtered_df, agent2) | |
return filtered_df | |
# triggered only once at startup => read query parameter if it exists | |
def load_query(request: gr.Request): | |
query = request.query_params.get("query") or "" | |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
"Model", "Agent", "Opponent Model", "Opponent Agent" | |
] | |
# We use COLS to maintain sorting | |
all_columns = games | |
if len(columns) == 0: | |
filtered_df = df[ | |
always_here_cols + | |
[c for c in all_columns if c in df.columns] | |
] | |
filtered_df["Average"] = add_average_col(filtered_df) | |
column_to_move = "Average" | |
current_index = filtered_df.columns.get_loc(column_to_move) | |
# Move the column to the desired index | |
filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move)) | |
return filtered_df | |
filtered_df = df[ | |
always_here_cols + | |
[c for c in all_columns if c in df.columns and c in columns] | |
] | |
if "Average" in columns: | |
filtered_df["Average"] = add_average_col(filtered_df) | |
# Get the current index of the column | |
column_to_move = "Average" | |
current_index = filtered_df.columns.get_loc(column_to_move) | |
# Move the column to the desired index | |
filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move)) | |
else: | |
if "Average" in filtered_df.columns: | |
# Remove the column | |
filtered_df = filtered_df.drop(columns=["Average"]) | |
return filtered_df | |
def filter_model1( | |
df: pd.DataFrame, model_query: list | |
) -> pd.DataFrame: | |
# Show all models | |
if len(model_query) == 0: | |
return df | |
filtered_df = df | |
filtered_df = filtered_df[filtered_df["Model"].isin( | |
model_query)] | |
return filtered_df | |
def filter_model2( | |
df: pd.DataFrame, model_query: list | |
) -> pd.DataFrame: | |
# Show all models | |
if len(model_query) == 0: | |
return df | |
filtered_df = df | |
filtered_df = filtered_df[filtered_df["Opponent Model"].isin( | |
model_query)] | |
return filtered_df | |
def filter_agent1( | |
df: pd.DataFrame, agent_query: list | |
) -> pd.DataFrame: | |
# Show all models | |
if len(agent_query) == 0: | |
return df | |
filtered_df = df | |
filtered_df = filtered_df[filtered_df["Agent"].isin( | |
agent_query)] | |
return filtered_df | |
def filter_agent2( | |
df: pd.DataFrame, agent_query: list | |
) -> pd.DataFrame: | |
# Show all models | |
if len(agent_query) == 0: | |
return df | |
filtered_df = df | |
filtered_df = filtered_df[filtered_df["Opponent Agent"].isin( | |
agent_query)] | |
return filtered_df | |
# leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], False, False) | |
class LLM_Model: | |
def __init__(self, t_value, model_value, average_value, arc_value, hellaSwag_value, mmlu_value) -> None: | |
self.t = t_value | |
self.model = model_value | |
self.average = average_value | |
self.arc = arc_value | |
self.hellaSwag = hellaSwag_value | |
self.mmlu = mmlu_value | |
games = ["Breakthrough", "Connect Four", "Blind Auction", "Kuhn Poker", | |
"Liar's Dice", "Negotiation", "Nim", "Pig", "Iterated Prisoner's Dilemma", "Tic-Tac-Toe"] | |
# models = ["gpt-35-turbo-1106", "gpt-4", "Llama-2-70b-chat-hf", "CodeLlama-34b-Instruct-hf", | |
# "CodeLlama-70b-Instruct-hf", "Mistral-7B-Instruct-v01", "Mistral-7B-OpenOrca"] | |
# agents = ["Prompt Agent", "CoT Agent", "SC-CoT Agent", | |
# "ToT Agent", "MCTS", "Random", "TitforTat"] | |
demo = gr.Blocks(css=custom_css) | |
def load_image(image_path): | |
image = Image.open(image_path) | |
return image | |
with demo: | |
with gr.Row(): | |
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1, | |
show_download_button=False, container=False) | |
gr.HTML(TITLE, elem_id="title") | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π UnlearnCanvas Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
'Average' | |
]+games, | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Column(min_width=320): | |
# with gr.Box(elem_id="box-filter"): | |
model1_column = gr.CheckboxGroup( | |
label="Model", | |
choices=models, | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
agent1_column = gr.CheckboxGroup( | |
label="Agents", | |
choices=agents, | |
interactive=True, | |
elem_id="filter-columns-precision", | |
) | |
model2_column = gr.CheckboxGroup( | |
label="Opponent Model", | |
choices=opponent_models, | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
agent2_column = gr.CheckboxGroup( | |
label="Opponent Agents", | |
choices=opponent_agents, | |
interactive=True, | |
elem_id="filter-columns-precision", | |
) | |
# filter_columns_size = gr.CheckboxGroup( | |
# label="Model sizes (in billions of parameters)", | |
# choices=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)], | |
# value=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)], | |
# interactive=True, | |
# elem_id="filter-columns-size", | |
# ) | |
leaderboard_table = gr.components.Dataframe( | |
value=gtbench_raw_data, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
# column_widths=["2%", "33%"] | |
) | |
game_bench_df_for_search = gr.components.Dataframe( | |
value=gtbench_raw_data, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=False, | |
# column_widths=["2%", "33%"] | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
# hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
# value=[], | |
# headers=COLS, | |
# datatype=TYPES, | |
# visible=False, | |
# ) | |
# search_bar.submit( | |
# update_table, | |
# [ | |
# # hidden_leaderboard_table_for_search, | |
# # shown_columns, | |
# # filter_columns_type, | |
# # filter_columns_precision, | |
# # filter_columns_size, | |
# # deleted_models_visibility, | |
# # flagged_models_visibility, | |
# # search_bar, | |
# ], | |
# leaderboard_table, | |
# ) | |
# # Define a hidden component that will trigger a reload only if a query parameter has be set | |
# hidden_search_bar = gr.Textbox(value="", visible=False) | |
# hidden_search_bar.change( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# shown_columns, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# flagged_models_visibility, | |
# search_bar, | |
# ], | |
# leaderboard_table, | |
# ) | |
# # Check query parameter once at startup and update search bar + hidden component | |
# demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | |
for selector in [shown_columns, model1_column, model2_column, agent1_column, agent2_column]: | |
selector.change( | |
update_table, | |
[ | |
game_bench_df_for_search, | |
shown_columns, | |
model1_column, | |
model2_column, | |
agent1_column, | |
agent2_column | |
# filter_columns_precision, | |
# None, # filter_columns_size, | |
# None, # deleted_models_visibility, | |
# None, # flagged_models_visibility, | |
# None, # search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
# with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=4): | |
# with gr.Row(): | |
# with gr.Column(): | |
# chart = create_metric_plot_obj_1( | |
# dummy_data_for_plot( | |
# ["Metric1", "Metric2", 'Metric3']), | |
# ["Metric1", "Metric2", "Metric3"], | |
# title="Average of Top Scores and Human Baseline Over Time (from last update)", | |
# ) | |
# gr.Plot(value=chart, min_width=500) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") | |
''' | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, | |
elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Finished Evaluations ({9})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=None, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"π Running Evaluation Queue ({5})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=None, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Evaluation Queue ({7})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=None, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your Agent here!", | |
elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Agent name") | |
# revision_name_textbox = gr.Textbox( | |
# label="Revision commit", placeholder="main") | |
# private = gr.Checkbox( | |
# False, label="Private", visible=not IS_PUBLIC) | |
model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") | |
for t in ModelType if t != ModelType.Unknown], | |
label="Agent type", | |
multiselect=False, | |
value=ModelType.FT.to_str(" : "), | |
interactive=True, | |
) | |
# with gr.Column(): | |
# precision = gr.Dropdown( | |
# choices=[i.value.name for i in Precision if i != | |
# Precision.Unknown], | |
# label="Precision", | |
# multiselect=False, | |
# value="float16", | |
# interactive=True, | |
# ) | |
# weight_type = gr.Dropdown( | |
# choices=[i.value.name for i in WeightType], | |
# label="Weights type", | |
# multiselect=False, | |
# value="Original", | |
# interactive=True, | |
# ) | |
# base_model_name_textbox = gr.Textbox( | |
# label="Base model (for delta or adapter weights)") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
# submit_button.click( | |
# add_new_eval, | |
# [ | |
# model_name_textbox, | |
# base_model_name_textbox, | |
# revision_name_textbox, | |
# precision, | |
# private, | |
# weight_type, | |
# model_type, | |
# ], | |
# submission_result, | |
# ) | |
''' | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
# scheduler = BackgroundScheduler() | |
# scheduler.add_job(restart_space, "interval", seconds=1800) | |
# scheduler.start() | |
demo.launch() | |
# Both launches the space and its CI | |
# configure_space_ci( | |
# demo.queue(default_concurrency_limit=40), | |
# trusted_authors=[], # add manually trusted authors | |
# private="True", # ephemeral spaces will have same visibility as the main space. Otherwise, set to `True` or `False` explicitly. | |
# variables={}, # We overwrite HF_HOME as tmp CI spaces will have no cache | |
# secrets=["HF_TOKEN", "H4_TOKEN"], # which secret do I want to copy from the main space? Can be a `List[str]`."HF_TOKEN", "H4_TOKEN" | |
# hardware=None, # "cpu-basic" by default. Otherwise set to "auto" to have same hardware as the main space or any valid string value. | |
# storage=None, # no storage by default. Otherwise set to "auto" to have same storage as the main space or any valid string value. | |
# ).launch() | |
# notes: opponent model , opponent agent | |
# column is games | |