Spaces:
Running
Running
File size: 24,122 Bytes
775d6d5 dd6de00 2bfffa6 dd6de00 84b695c 9a9538f 775d6d5 dd6de00 b61ee91 ec837f7 fb1d503 dd6de00 fb1d503 2bfffa6 84b695c dd6de00 84b695c c0e25af 84b695c c0e25af 96244d2 dd6de00 c0e25af 84b695c dd6de00 96244d2 84b695c c0e25af 96244d2 dd6de00 c0e25af 84b695c dd6de00 96244d2 84b695c c0e25af 96244d2 dd6de00 c0e25af 84b695c dd6de00 96244d2 84b695c c0e25af 96244d2 dd6de00 c0e25af 84b695c dd6de00 96244d2 84b695c 96244d2 84b695c 96244d2 c0e25af 84b695c dd6de00 e6162d3 ff7bae6 96244d2 e6162d3 dd6de00 e6162d3 96244d2 dd6de00 e6162d3 51355c0 dd6de00 51355c0 dd6de00 51355c0 dd6de00 9a9538f e344f2d 1ee12e5 e344f2d 9a9538f 96244d2 775d6d5 fb1d503 775d6d5 96244d2 775d6d5 9a9538f 96244d2 9a9538f 96244d2 775d6d5 9a9538f 4049eba 431deae 96244d2 9a9538f 96244d2 9a9538f 775d6d5 96244d2 775d6d5 ef27d85 4049eba ef27d85 9a9538f e6162d3 b61ee91 e344f2d 1ee12e5 e344f2d b61ee91 e344f2d b61ee91 e344f2d b61ee91 e344f2d b61ee91 e344f2d b61ee91 e344f2d b61ee91 e344f2d b61ee91 e344f2d b61ee91 df243be 70a0c4d dd6de00 6df9775 70a0c4d 4049eba 6df9775 42fa09f 96244d2 df243be 70a0c4d dd6de00 70a0c4d df243be 96244d2 c369e1a 9235666 c369e1a 3fac53e c369e1a 70a0c4d dd6de00 07d6350 9235666 dd6de00 df243be 70a0c4d 42fa09f 70a0c4d 2bfffa6 70a0c4d 2bfffa6 f008a24 ef27d85 96244d2 ef27d85 96244d2 ef27d85 96244d2 ef27d85 ff7bae6 ef27d85 fb1d503 f50a979 96244d2 f50a979 96244d2 f50a979 08caa7f f50a979 96244d2 08caa7f f50a979 6302d85 fb1d503 84b695c c0e25af 96244d2 c0e25af 84b695c 96244d2 c0e25af 84b695c 5aceada afb06d8 5aceada afb06d8 dd6de00 e481665 afb06d8 5aceada 84b695c c0e25af f58d4b8 96244d2 c0e25af 84b695c 11deaaa 84b695c fb1d503 9f408e2 84b695c 2bfffa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import JSONResponse, StreamingResponse
from webscout import WEBS, YTTranscriber, LLM, GoogleS
from typing import Optional, List, Dict
from fastapi.encoders import jsonable_encoder
from bs4 import BeautifulSoup
import requests
import aiohttp
import asyncio
import threading
import json
from huggingface_hub import InferenceClient
from PIL import Image
import io
from easygoogletranslate import EasyGoogleTranslate
from pydantic import BaseModel
app = FastAPI()
# Define Pydantic models for request payloads
class ChatRequest(BaseModel):
q: str
model: str = "gpt-4o-mini"
history: List[Dict[str, str]] = []
proxy: Optional[str] = None
class AIRequest(BaseModel):
user: str
model: str = "llama3-70b"
system: str = "Answer as concisely as possible."
@app.get("/")
async def root():
return {"message": "API documentation can be found at /docs"}
@app.get("/health")
async def health_check():
return {"status": "OK"}
@app.get("/api/search")
async def search(
q: str,
max_results: int = 10,
timelimit: Optional[str] = None,
safesearch: str = "moderate",
region: str = "wt-wt",
backend: str = "api",
proxy: Optional[str] = None
):
"""Perform a text search."""
try:
with WEBS(proxy=proxy) as webs:
results = webs.text(
keywords=q,
region=region,
safesearch=safesearch,
timelimit=timelimit,
backend=backend,
max_results=max_results,
)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during search: {e}")
@app.get("/api/images")
async def images(
q: str,
max_results: int = 10,
safesearch: str = "moderate",
region: str = "wt-wt",
timelimit: Optional[str] = None,
size: Optional[str] = None,
color: Optional[str] = None,
type_image: Optional[str] = None,
layout: Optional[str] = None,
license_image: Optional[str] = None,
proxy: Optional[str] = None
):
"""Perform an image search."""
try:
with WEBS(proxy=proxy) as webs:
results = webs.images(
keywords=q,
region=region,
safesearch=safesearch,
timelimit=timelimit,
size=size,
color=color,
type_image=type_image,
layout=layout,
license_image=license_image,
max_results=max_results,
)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during image search: {e}")
@app.get("/api/videos")
async def videos(
q: str,
max_results: int = 10,
safesearch: str = "moderate",
region: str = "wt-wt",
timelimit: Optional[str] = None,
resolution: Optional[str] = None,
duration: Optional[str] = None,
license_videos: Optional[str] = None,
proxy: Optional[str] = None
):
"""Perform a video search."""
try:
with WEBS(proxy=proxy) as webs:
results = webs.videos(
keywords=q,
region=region,
safesearch=safesearch,
timelimit=timelimit,
resolution=resolution,
duration=duration,
license_videos=license_videos,
max_results=max_results,
)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during video search: {e}")
@app.get("/api/news")
async def news(
q: str,
max_results: int = 10,
safesearch: str = "moderate",
region: str = "wt-wt",
timelimit: Optional[str] = None,
proxy: Optional[str] = None
):
"""Perform a news search."""
try:
with WEBS(proxy=proxy) as webs:
results = webs.news(
keywords=q,
region=region,
safesearch=safesearch,
timelimit=timelimit,
max_results=max_results
)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during news search: {e}")
@app.get("/api/answers")
async def answers(q: str, proxy: Optional[str] = None):
"""Get instant answers for a query."""
try:
with WEBS(proxy=proxy) as webs:
results = webs.answers(keywords=q)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error getting instant answers: {e}")
@app.get("/api/maps")
async def maps(
q: str,
place: Optional[str] = None,
street: Optional[str] = None,
city: Optional[str] = None,
county: Optional[str] = None,
state: Optional[str] = None,
country: Optional[str] = None,
postalcode: Optional[str] = None,
latitude: Optional[str] = None,
longitude: Optional[str] = None,
radius: int = 0,
max_results: int = 10,
proxy: Optional[str] = None
):
"""Perform a maps search."""
try:
with WEBS(proxy=proxy) as webs:
results = webs.maps(keywords=q, place=place, street=street, city=city, county=county, state=state, country=country, postalcode=postalcode, latitude=latitude, longitude=longitude, radius=radius, max_results=max_results)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during maps search: {e}")
@app.get("/api/chat")
async def chat(
q: str,
model: str = "gpt-4o-mini",
proxy: Optional[str] = None
):
"""Interact with a specified large language model."""
try:
with WEBS(proxy=proxy) as webs:
results = webs.chat(keywords=q, model=model)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error getting chat results: {e}")
@app.post("/api/chat-post")
async def chat_post(request: ChatRequest):
"""Interact with a specified large language model with chat history."""
try:
with WEBS(proxy=request.proxy) as webs:
results = webs.chat(keywords=request.q, model=request.model, chat_messages=request.history)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error getting chat results: {e}")
@app.get("/api/llm")
async def llm_chat(
model: str,
message: str,
system_prompt: str = Query(None, description="Optional custom system prompt")
):
"""Interact with a specified large language model with an optional system prompt."""
try:
messages = [{"role": "user", "content": message}]
if system_prompt:
messages.insert(0, {"role": "system", "content": system_prompt})
llm = LLM(model=model)
response = llm.chat(messages=messages)
return JSONResponse(content={"response": response})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during LLM chat: {e}")
@app.post("/api/ai-post")
async def ai_post(request: AIRequest):
"""Interact with a specified large language model (using AIRequest model)."""
try:
llm = LLM(model=request.model)
response = llm.chat(messages=[
{"role": "system", "content": request.system},
{"role": "user", "content": request.user}
])
return JSONResponse(content={"response": response})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during AI request: {e}")
def extract_text_from_webpage(html_content):
"""Extracts visible text from HTML content using BeautifulSoup."""
soup = BeautifulSoup(html_content, "html.parser")
# Remove unwanted tags
for tag in soup(["script", "style", "header", "footer", "nav"]):
tag.extract()
# Get the remaining visible text
visible_text = soup.get_text(strip=True)
return visible_text
async def fetch_and_extract(url, max_chars, proxy: Optional[str] = None):
"""Fetches a URL and extracts text asynchronously."""
async with aiohttp.ClientSession() as session:
try:
async with session.get(url, headers={"User-Agent": "Mozilla/5.0"}, proxy=proxy) as response:
response.raise_for_status()
html_content = await response.text()
visible_text = extract_text_from_webpage(html_content)
if len(visible_text) > max_chars:
visible_text = visible_text[:max_chars] + "..."
return {"link": url, "text": visible_text}
except (aiohttp.ClientError, requests.exceptions.RequestException) as e:
print(f"Error fetching or processing {url}: {e}")
return {"link": url, "text": None}
@app.get("/api/web_extract")
async def web_extract(
url: str,
max_chars: int = 12000, # Adjust based on token limit
proxy: Optional[str] = None
):
"""Extracts text from a given URL."""
try:
result = await fetch_and_extract(url, max_chars, proxy)
return {"url": url, "text": result["text"]}
except requests.exceptions.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}")
@app.get("/api/search-and-extract")
async def web_search_and_extract(
q: str,
max_results: int = 3,
timelimit: Optional[str] = None,
safesearch: str = "moderate",
region: str = "wt-wt",
backend: str = "html",
max_chars: int = 6000,
extract_only: bool = True,
proxy: Optional[str] = None
):
"""
Searches using WEBS, extracts text from the top results, and returns both.
"""
try:
with WEBS(proxy=proxy) as webs:
# Perform WEBS search
search_results = webs.text(keywords=q, region=region, safesearch=safesearch,
timelimit=timelimit, backend=backend, max_results=max_results)
# Extract text from each result's link asynchronously
tasks = [fetch_and_extract(result['href'], max_chars, proxy) for result in search_results if 'href' in result]
extracted_results = await asyncio.gather(*tasks)
if extract_only:
return JSONResponse(content=jsonable_encoder(extracted_results))
else:
return JSONResponse(content=jsonable_encoder({"search_results": search_results, "extracted_results": extracted_results}))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during search and extraction: {e}")
def extract_text_from_webpage2(html_content):
"""Extracts visible text from HTML content using BeautifulSoup."""
soup = BeautifulSoup(html_content, "html.parser")
# Remove unwanted tags
for tag in soup(["script", "style", "header", "footer", "nav"]):
tag.extract()
# Get the remaining visible text
visible_text = soup.get_text(strip=True)
return visible_text
def fetch_and_extract2(url, max_chars, proxy: Optional[str] = None):
"""Fetches a URL and extracts text using threading."""
proxies = {'http': proxy, 'https': proxy} if proxy else None
try:
response = requests.get(url, headers={"User-Agent": "Mozilla/5.0"}, proxies=proxies)
response.raise_for_status()
html_content = response.text
visible_text = extract_text_from_webpage2(html_content)
if len(visible_text) > max_chars:
visible_text = visible_text[:max_chars] + "..."
return {"link": url, "text": visible_text}
except (requests.exceptions.RequestException) as e:
print(f"Error fetching or processing {url}: {e}")
return {"link": url, "text": None}
@app.get("/api/websearch-and-extract-threading")
def web_search_and_extract_threading(
q: str,
max_results: int = 3,
timelimit: Optional[str] = None,
safesearch: str = "moderate",
region: str = "wt-wt",
backend: str = "html",
max_chars: int = 6000,
extract_only: bool = True,
proxy: Optional[str] = None
):
"""
Searches using WEBS, extracts text from the top results using threading, and returns both.
"""
try:
with WEBS(proxy=proxy) as webs:
# Perform WEBS search
search_results = webs.text(keywords=q, region=region, safesearch=safesearch,
timelimit=timelimit, backend=backend, max_results=max_results)
# Extract text from each result's link using threading
extracted_results = []
threads = []
for result in search_results:
if 'href' in result:
thread = threading.Thread(target=lambda: extracted_results.append(fetch_and_extract2(result['href'], max_chars, proxy)))
threads.append(thread)
thread.start()
# Wait for all threads to finish
for thread in threads:
thread.join()
if extract_only:
return JSONResponse(content=jsonable_encoder(extracted_results))
else:
return JSONResponse(content=jsonable_encoder({"search_results": search_results, "extracted_results": extracted_results}))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during search and extraction: {e}")
@app.get("/api/adv_web_search")
async def adv_web_search(
q: str,
model: str = "gpt-4o-mini", # Use webs.chat by default
max_results: int = 5,
timelimit: Optional[str] = None,
safesearch: str = "moderate",
region: str = "wt-wt",
backend: str = "html",
max_chars: int = 15000,
system_prompt: str = "You are an advanced AI chatbot. Provide the best answer to the user based on Google search results.",
proxy: Optional[str] = None
):
"""
Combines web search, web extraction, and chat model for advanced search.
"""
try:
with WEBS(proxy=proxy) as webs:
search_results = webs.text(keywords=q, region=region,
safesearch=safesearch,
timelimit=timelimit, backend=backend,
max_results=max_results)
# 2. Extract text from top search result URLs asynchronously
extracted_text = ""
tasks = [fetch_and_extract(result['href'], 6000, proxy) for result in search_results if 'href' in result]
extracted_results = await asyncio.gather(*tasks)
for result in extracted_results:
if result['text'] and len(extracted_text) < max_chars:
extracted_text += f"## Content from: {result['link']}\n\n{result['text']}\n\n"
extracted_text[:max_chars]
# 3. Construct the prompt for the chat model
ai_prompt = (
f"User Query: {q}\n\n"
f"Please provide a detailed and accurate answer to the user's query. Include relevant information extracted from the search results below. Ensure to cite sources by providing links to the original content where applicable. Format your response as follows:\n\n"
f"1. **Answer:** Provide a clear and comprehensive answer to the user's query.\n"
f"2. **Details:** Include any additional relevant details or explanations.\n"
f"3. **Sources:** List the sources of the information with clickable links for further reading.\n\n"
f"Search Results:\n{extracted_text}"
)
# 4. Get the chat model's response using webs.chat
with WEBS(proxy=proxy) as webs:
response = webs.chat(keywords=ai_prompt, model=model)
# 5. Return the results
return JSONResponse(content={"response": response})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during advanced search: {e}")
@app.post("/api/AI_search_google")
async def adv_web_search(
q: str,
model: str = "gpt-4o-mini", # Use webs.chat by default
max_results: int = 5,
timelimit: Optional[str] = None,
safesearch: str = "moderate",
region: str = "wt-wt",
# backend: str = "html",
max_chars: int = 15000,
system_prompt: str = "You are an advanced AI chatbot. Provide the best answer to the user based on Google search results.",
proxy: Optional[str] = None
):
"""
Combines web search, web extraction, and chat model for advanced search.
"""
try:
with GoogleS(proxy=proxy) as webs:
search_results = webs.search(query=q, region=region,
safe=safesearch,
time_period=timelimit,
max_results=max_results)
# 2. Extract text from top search result URLs asynchronously
extracted_text = ""
tasks = [fetch_and_extract(result['href'], 6000, proxy) for result in search_results if 'href' in result]
extracted_results = await asyncio.gather(*tasks)
for result in extracted_results:
if result['text'] and len(extracted_text) < max_chars:
extracted_text += f"## Content from: {result['link']}\n\n{result['text']}\n\n"
extracted_text[:max_chars]
# 3. Construct the prompt for the chat model
ai_prompt = (
f"User Query: {q}\n\n"
f"Please provide a detailed and accurate answer to the user's query. Include relevant information extracted from the search results below. Ensure to cite sources by providing links to the original content where applicable. Format your response as follows:\n\n"
f"1. **Answer:** Provide a clear and comprehensive answer to the user's query.\n"
f"2. **Details:** Include any additional relevant details or explanations.\n"
f"3. **Summary:** Provide a summary of the search results. **"
f"4. **Sources:** List the sources of the information with clickable links for further reading.\n\n"
f"Search Results:\n{extracted_text}"
)
# 4. Get the chat model's response using webs.chat
with WEBS(proxy=proxy) as webs:
response = webs.chat(keywords=ai_prompt, model=model)
# 5. Return the results
return JSONResponse(content={"answer": response})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during advanced search: {e}")
@app.get("/api/website_summarizer")
async def website_summarizer(url: str, proxy: Optional[str] = None):
"""Summarizes the content of a given URL using a chat model."""
try:
# Extract text from the given URL
proxies = {'http': proxy, 'https': proxy} if proxy else None
response = requests.get(url, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, proxies=proxies)
response.raise_for_status()
visible_text = extract_text_from_webpage(response.text)
if len(visible_text) > 7500: # Adjust max_chars based on your needs
visible_text = visible_text[:7500] + "..."
# Use chat model to summarize the extracted text
with WEBS(proxy=proxy) as webs:
summary_prompt = f"Summarize this in detail in Paragraph: {visible_text}"
summary_result = webs.chat(keywords=summary_prompt, model="gpt-4o-mini")
# Return the summary result
return JSONResponse(content=jsonable_encoder({summary_result}))
except requests.exceptions.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during summarization: {e}")
@app.get("/api/ask_website")
async def ask_website(url: str, question: str, model: str = "llama-3-70b", proxy: Optional[str] = None):
"""
Asks a question about the content of a given website.
"""
try:
# Extract text from the given URL
proxies = {'http': proxy, 'https': proxy} if proxy else None
response = requests.get(url, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, proxies=proxies)
response.raise_for_status()
visible_text = extract_text_from_webpage(response.text)
if len(visible_text) > 7500: # Adjust max_chars based on your needs
visible_text = visible_text[:7500] + "..."
# Construct a prompt for the chat model
prompt = f"Based on the following text, answer this question in Paragraph: [QUESTION] {question} [TEXT] {visible_text}"
# Use chat model to get the answer
with WEBS(proxy=proxy) as webs:
answer_result = webs.chat(keywords=prompt, model=model)
# Return the answer result
return JSONResponse(content=jsonable_encoder({answer_result}))
except requests.exceptions.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during question answering: {e}")
@app.get("/api/translate")
async def translate(
q: str,
from_: Optional[str] = None,
to: str = "en",
proxy: Optional[str] = None
):
"""Translate text."""
try:
with WEBS(proxy=proxy) as webs:
results = webs.translate(keywords=q, from_=from_, to=to)
return JSONResponse(content=jsonable_encoder(results))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during translation: {e}")
@app.get("/api/google_translate")
def google_translate(q: str, from_: Optional[str] = 'auto', to: str = "en"):
try:
translator = EasyGoogleTranslate(
source_language=from_,
target_language=to,
timeout=10
)
result = translator.translate(q)
return JSONResponse(content=jsonable_encoder({"detected_language": from_ , "original": q , "translated": result}))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during translation: {e}")
@app.get("/api/youtube/transcript")
async def youtube_transcript(
video_url: str,
preserve_formatting: bool = False,
proxy: Optional[str] = None # Add proxy parameter
):
"""Get the transcript of a YouTube video."""
try:
proxies = {"http": proxy, "https": proxy} if proxy else None
transcript = YTTranscriber.get_transcript(video_url, languages=None, preserve_formatting=preserve_formatting, proxies=proxies)
return JSONResponse(content=jsonable_encoder(transcript))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error getting YouTube transcript: {e}")
@app.get("/weather/json/{location}")
def get_weather_json(location: str):
url = f"https://wttr.in/{location}?format=j1"
response = requests.get(url)
if response.status_code == 200:
return response.json()
else:
return {"error": f"Unable to fetch weather data. Status code: {response.status_code}"}
@app.get("/weather/ascii/{location}")
def get_ascii_weather(location: str):
url = f"https://wttr.in/{location}"
response = requests.get(url, headers={'User-Agent': 'curl'})
if response.status_code == 200:
return response.text
else:
return {"error": f"Unable to fetch weather data. Status code: {response.status_code}"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8083)
|