Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# -*- coding:utf-8 -*- | |
# Power by Zongsheng Yue 2024-12-11 17:17:41 | |
import spaces | |
import warnings | |
warnings.filterwarnings("ignore") | |
import argparse | |
import numpy as np | |
import gradio as gr | |
from pathlib import Path | |
from omegaconf import OmegaConf | |
from sampler_invsr import InvSamplerSR | |
from utils import util_common | |
from utils import util_image | |
from basicsr.utils.download_util import load_file_from_url | |
def get_configs(num_steps=1, chopping_size=128, seed=12345): | |
configs = OmegaConf.load("./configs/sample-sd-turbo.yaml") | |
if num_steps == 1: | |
configs.timesteps = [200,] | |
elif num_steps == 2: | |
configs.timesteps = [200, 100] | |
elif num_steps == 3: | |
configs.timesteps = [200, 100, 50] | |
elif num_steps == 4: | |
configs.timesteps = [200, 150, 100, 50] | |
elif num_steps == 5: | |
configs.timesteps = [250, 200, 150, 100, 50] | |
else: | |
assert num_steps <= 250 | |
configs.timesteps = np.linspace( | |
start=250, stop=0, num=num_steps, endpoint=False, dtype=np.int64() | |
).tolist() | |
print(f'Setting timesteps for inference: {configs.timesteps}') | |
# path to save noise predictor | |
started_ckpt_name = "noise_predictor_sd_turbo_v5.pth" | |
started_ckpt_dir = "./weights" | |
util_common.mkdir(started_ckpt_dir, delete=False, parents=True) | |
started_ckpt_path = Path(started_ckpt_dir) / started_ckpt_name | |
if not started_ckpt_path.exists(): | |
load_file_from_url( | |
url="https://huggingface.co/OAOA/InvSR/resolve/main/noise_predictor_sd_turbo_v5.pth", | |
model_dir=started_ckpt_dir, | |
progress=True, | |
file_name=started_ckpt_name, | |
) | |
configs.model_start.ckpt_path = str(started_ckpt_path) | |
configs.bs = 1 | |
configs.seed = seed | |
configs.basesr.chopping.pch_size = chopping_size | |
if chopping_size == 128: | |
configs.basesr.chopping.extra_bs = 8 | |
elif chopping_size == 256: | |
configs.basesr.chopping.extra_bs = 4 | |
else: | |
configs.basesr.chopping.extra_bs = 1 | |
return configs | |
def predict(in_path, num_steps=1, chopping_size=128, seed=12345): | |
configs = get_configs(num_steps=num_steps, chopping_size=chopping_size, seed=seed) | |
sampler = InvSamplerSR(configs) | |
out_dir = Path('invsr_output') | |
if not out_dir.exists(): | |
out_dir.mkdir() | |
sampler.inference(in_path, out_path=out_dir, bs=1) | |
out_path = out_dir / f"{Path(in_path).stem}.png" | |
assert out_path.exists(), 'Super-resolution failed!' | |
im_sr = util_image.imread(out_path, chn="rgb", dtype="uint8") | |
return im_sr, str(out_path) | |
title = "Arbitrary-steps Image Super-resolution via Diffusion Inversion" | |
description = r""" | |
<b>Official Gradio demo</b> for <a href='https://github.com/zsyOAOA/InvSR' target='_blank'><b>Arbitrary-steps Image Super-resolution via Diffuion Inversion</b></a>.<br> | |
π₯ InvSR is an image super-resolution method via Diffusion Inversion, supporting arbitrary sampling steps.<br> | |
""" | |
article = r""" | |
If you've found InvSR useful for your research or projects, please show your support by β the <a href='https://github.com/zsyOAOA/InvSR' target='_blank'>Github Repo</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/zsyOAOA/InvSR?affiliations=OWNER&color=green&style=social)](https://github.com/zsyOAOA/InvSR) | |
--- | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@article{yue2024InvSR, | |
title={Arbitrary-steps Image Super-resolution via Diffusion Inversion}, | |
author={Yue, Zongsheng and Kang, Liao and Loy, Chen Change}, | |
journal = {arXiv preprint arXiv:2412.09013}, | |
year={2024}, | |
} | |
``` | |
π **License** | |
This project is licensed under <a rel="license" href="https://github.com/zsyOAOA/InvSR/blob/master/LICENSE">S-Lab License 1.0</a>. | |
Redistribution and use for non-commercial purposes should follow this license. | |
π§ **Contact** | |
If you have any questions, please feel free to contact me via <b>[email protected]</b>. | |
![visitors](https://visitor-badge.laobi.icu/badge?page_id=zsyOAOA/InvSR) | |
""" | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Image(type="filepath", label="Input: Low Quality Image"), | |
gr.Dropdown( | |
choices=[1,2,3,4,5], | |
value=1, | |
label="Number of steps", | |
), | |
gr.Dropdown( | |
choices=[128, 256, 512], | |
value=128, | |
label="Chopping size", | |
), | |
gr.Number(value=12345, precision=0, label="Ranom seed") | |
], | |
outputs=[ | |
gr.Image(type="numpy", label="Output: High Quality Image"), | |
gr.File(label="Download the output") | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=[ | |
['./testdata/RealSet80/29.jpg', 3, 128, 12345], | |
['./testdata/RealSet80/32.jpg', 1, 128, 12345], | |
['./testdata/RealSet80/0030.jpg', 1, 128, 12345], | |
['./testdata/RealSet80/2684538-PH.jpg', 1, 128, 12345], | |
['./testdata/RealSet80/oldphoto6.png', 1, 128, 12345], | |
] | |
) | |
demo.queue(max_size=5) | |
demo.launch(share=False) | |