File size: 8,012 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import random
import json
import numpy as np
from pathlib import Path
from typing import Iterable
from omegaconf import ListConfig

import cv2
import torch
from functools import partial
import torchvision as thv
from torch.utils.data import Dataset

from utils import util_sisr
from utils import util_image
from utils import util_common

from basicsr.data.transforms import augment
from basicsr.data.realesrgan_dataset import RealESRGANDataset

def get_transforms(transform_type, kwargs):
    '''
    Accepted optins in kwargs.
        mean: scaler or sequence, for nornmalization
        std: scaler or sequence, for nornmalization
        crop_size: int or sequence, random or center cropping
        scale, out_shape: for Bicubic
        min_max: tuple or list with length 2, for cliping
    '''
    if transform_type == 'default':
        transform = thv.transforms.Compose([
            thv.transforms.ToTensor(),
            thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
        ])
    elif transform_type == 'resize_ccrop_norm':
        transform = thv.transforms.Compose([
            util_image.SmallestMaxSize(
                max_size=kwargs.get('size'),
                interpolation=kwargs.get('interpolation'),
                ),
            thv.transforms.ToTensor(),
            thv.transforms.CenterCrop(size=kwargs.get('size', None)),
            thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
        ])
    elif transform_type == 'ccrop_norm':
        transform = thv.transforms.Compose([
            thv.transforms.ToTensor(),
            thv.transforms.CenterCrop(size=kwargs.get('size', None)),
            thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
        ])
    elif transform_type == 'rcrop_aug_norm':
        transform = thv.transforms.Compose([
            util_image.RandomCrop(pch_size=kwargs.get('pch_size', 256)),
            util_image.SpatialAug(
                only_hflip=kwargs.get('only_hflip', False),
                only_vflip=kwargs.get('only_vflip', False),
                only_hvflip=kwargs.get('only_hvflip', False),
                ),
            util_image.ToTensor(max_value=kwargs.get('max_value')),  # (ndarray, hwc) --> (Tensor, chw)
            thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
        ])
    elif transform_type == 'aug_norm':
        transform = thv.transforms.Compose([
            util_image.SpatialAug(
                only_hflip=kwargs.get('only_hflip', False),
                only_vflip=kwargs.get('only_vflip', False),
                only_hvflip=kwargs.get('only_hvflip', False),
                ),
            util_image.ToTensor(),   # hwc --> chw
            thv.transforms.Normalize(mean=kwargs.get('mean', 0.5), std=kwargs.get('std', 0.5)),
        ])
    else:
        raise ValueError(f'Unexpected transform_variant {transform_variant}')
    return transform

def create_dataset(dataset_config):
    if dataset_config['type'] == 'base':
        dataset = BaseData(**dataset_config['params'])
    elif dataset_config['type'] == 'base_meta':
        dataset = BaseDataMetaCond(**dataset_config['params'])
    elif dataset_config['type'] == 'realesrgan':
        dataset = RealESRGANDataset(dataset_config['params'])
    else:
        raise NotImplementedError(f"{dataset_config['type']}")

    return dataset

class BaseData(Dataset):
    def __init__(
            self,
            dir_path,
            txt_path=None,
            transform_type='default',
            transform_kwargs={'mean':0.0, 'std':1.0},
            extra_dir_path=None,
            extra_transform_type=None,
            extra_transform_kwargs=None,
            length=None,
            need_path=False,
            im_exts=['png', 'jpg', 'jpeg', 'JPEG', 'bmp'],
            recursive=False,
            ):
        super().__init__()

        file_paths_all = []
        if dir_path is not None:
            file_paths_all.extend(util_common.scan_files_from_folder(dir_path, im_exts, recursive))
        if txt_path is not None:
            file_paths_all.extend(util_common.readline_txt(txt_path))

        self.file_paths = file_paths_all if length is None else random.sample(file_paths_all, length)
        self.file_paths_all = file_paths_all

        self.length = length
        self.need_path = need_path
        self.transform = get_transforms(transform_type, transform_kwargs)

        self.extra_dir_path = extra_dir_path
        if extra_dir_path is not None:
            assert extra_transform_type is not None
            self.extra_transform = get_transforms(extra_transform_type, extra_transform_kwargs)

    def __len__(self):
        return len(self.file_paths)

    def __getitem__(self, index):
        im_path_base = self.file_paths[index]
        im_base = util_image.imread(im_path_base, chn='rgb', dtype='float32')

        im_target = self.transform(im_base)
        out = {'image':im_target, 'lq':im_target}

        if self.extra_dir_path is not None:
            im_path_extra = Path(self.extra_dir_path) / Path(im_path_base).name
            im_extra = util_image.imread(im_path_extra, chn='rgb', dtype='float32')
            im_extra = self.extra_transform(im_extra)
            out['gt'] = im_extra

        if self.need_path:
            out['path'] = im_path_base

        return out

    def reset_dataset(self):
        self.file_paths = random.sample(self.file_paths_all, self.length)

class BaseDataMetaCond(Dataset):
    def __init__(
            self,
            meta_dir,
            transform_type='default',
            transform_kwargs={'mean':0.5, 'std':0.5},
            length=None,
            need_path=False,
            cond_key='canny',
            cond_transform_type='default',
            cond_transform_kwargs={'mean':0.5, 'std':0.5},
            ):
        super().__init__()
        if not isinstance(meta_dir, ListConfig):
            meta_dir = [meta_dir,]
        meta_list = []
        # for current_dir in meta_dir:
            # for json_path in Path(current_dir).glob("*.json"):
                # with open(json_path, 'r') as json_file:
                    # meta_info = json.load(json_file)
                # meta_list.append(meta_info)
        for current_dir in meta_dir:
            meta_list.extend(sorted([str(x) for x in Path(current_dir).glob("*.json")]))
        self.meta_list = meta_list if length is None else meta_list[:length]

        self.cond_key = cond_key
        self.length = length
        self.need_path = need_path
        self.transform = get_transforms(transform_type, transform_kwargs)
        self.cond_trasform = get_transforms(cond_transform_type, cond_transform_kwargs)

    def __len__(self):
        return len(self.meta_list)

    def __getitem__(self, index):
        # meta_info = self.meta_list[index]
        json_path = self.meta_list[index]
        with open(json_path, 'r') as json_file:
            meta_info = json.load(json_file)

        # images
        im_path = meta_info['source']
        im_source = util_image.imread(im_path, chn='rgb', dtype='uint8')
        im_source = self.transform(im_source)
        out = {'image': im_source,}
        if self.need_path:
            out['path'] = im_path

        # latent
        if 'latent' in meta_info:
            latent_path = meta_info['latent']
            out['latent'] = np.load(latent_path)

        # prompt
        out['txt'] = meta_info['prompt']

        # condition
        cond_key = self.cond_key
        cond_path = meta_info[cond_key]
        if cond_key == 'canny':
            cond = util_image.imread(cond_path, chn='gray', dtype='uint8')[:, :, None]
        elif cond_key == 'seg':
            cond = util_image.imread(cond_path, chn='rgb', dtype='uint8')
        else:
            raise ValueError(f"Unexpected cond key: {cond_key}")
        cond = self.cond_trasform(cond)
        out['cond'] = cond

        return out