Spaces:
Restarting
on
CPU Upgrade
Creating functions for plotting results over time (#295)
Browse files- Creating functions for plotting results over time (319b0b7936fb504f9017c3c4ce9f10466ad55202)
- Added graphs tab (1d6addaf6050a163efb58af4eb6bc6346adfeaac)
- Changed to Plotly for interactive graphs! (65fc294da6b2789e87fd20d916732b3f91391843)
- Updated main to include title in the graph function parameters (e872e8a162076990e64ef65a05611bc0d042848a)
- Added y-axis range to make graph more aesthetically pleasing (02700b60517a1e28b27cdc57ffea040f9e6cf830)
- Fixing bug that messes up the order of models (75297e78c74b787229e69009b2ab9dfd3a339e20)
- Updated app.py to fix conflict and changed name of tab per Clémentine Fourrier's request (8e47868563c084edcd00b0f8cb696872404003b1)
- Updated plotted models to exclude flagged models (36bf409eccd16b3db35bd48882cf4b27cb73c832)
- Merge branch 'main' into pr/295 (81c331307b066857e513829a0ab9372421e315ca)
Co-authored-by: Christopher Canal <[email protected]>
- app.py +27 -0
- src/display_models/plot_results.py +223 -0
@@ -17,6 +17,13 @@ from src.assets.text_content import (
|
|
17 |
LLM_BENCHMARKS_TEXT,
|
18 |
TITLE,
|
19 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
from src.display_models.get_model_metadata import DO_NOT_SUBMIT_MODELS, ModelType
|
21 |
from src.display_models.modelcard_filter import check_model_card
|
22 |
from src.display_models.utils import (
|
@@ -93,6 +100,7 @@ update_collections(original_df.copy())
|
|
93 |
leaderboard_df = original_df.copy()
|
94 |
|
95 |
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
|
|
|
96 |
to_be_dumped = f"models = {repr(models)}\n"
|
97 |
|
98 |
(
|
@@ -515,6 +523,25 @@ with demo:
|
|
515 |
leaderboard_table,
|
516 |
queue=True,
|
517 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
519 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
520 |
|
|
|
17 |
LLM_BENCHMARKS_TEXT,
|
18 |
TITLE,
|
19 |
)
|
20 |
+
from src.display_models.plot_results import (
|
21 |
+
create_metric_plot_obj,
|
22 |
+
create_scores_df,
|
23 |
+
create_plot_df,
|
24 |
+
join_model_info_with_results,
|
25 |
+
HUMAN_BASELINES,
|
26 |
+
)
|
27 |
from src.display_models.get_model_metadata import DO_NOT_SUBMIT_MODELS, ModelType
|
28 |
from src.display_models.modelcard_filter import check_model_card
|
29 |
from src.display_models.utils import (
|
|
|
100 |
leaderboard_df = original_df.copy()
|
101 |
|
102 |
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
|
103 |
+
plot_df = create_plot_df(create_scores_df(join_model_info_with_results(original_df)))
|
104 |
to_be_dumped = f"models = {repr(models)}\n"
|
105 |
|
106 |
(
|
|
|
523 |
leaderboard_table,
|
524 |
queue=True,
|
525 |
)
|
526 |
+
|
527 |
+
with gr.TabItem("📈 Metrics evolution through time", elem_id="llm-benchmark-tab-table", id=4):
|
528 |
+
with gr.Row():
|
529 |
+
with gr.Column():
|
530 |
+
chart = create_metric_plot_obj(
|
531 |
+
plot_df,
|
532 |
+
["Average ⬆️"],
|
533 |
+
HUMAN_BASELINES,
|
534 |
+
title="Average of Top Scores and Human Baseline Over Time",
|
535 |
+
)
|
536 |
+
gr.Plot(value=chart, interactive=False, width=500, height=500)
|
537 |
+
with gr.Column():
|
538 |
+
chart = create_metric_plot_obj(
|
539 |
+
plot_df,
|
540 |
+
["ARC", "HellaSwag", "MMLU", "TruthfulQA"],
|
541 |
+
HUMAN_BASELINES,
|
542 |
+
title="Top Scores and Human Baseline Over Time",
|
543 |
+
)
|
544 |
+
gr.Plot(value=chart, interactive=False, width=500, height=500)
|
545 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
546 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
547 |
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.express as px
|
3 |
+
from plotly.graph_objs import Figure
|
4 |
+
import pickle
|
5 |
+
from datetime import datetime, timezone
|
6 |
+
from typing import List, Dict, Tuple, Any
|
7 |
+
from src.display_models.model_metadata_flags import FLAGGED_MODELS
|
8 |
+
|
9 |
+
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
10 |
+
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
11 |
+
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
|
12 |
+
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
|
13 |
+
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
|
14 |
+
# Define the human baselines
|
15 |
+
HUMAN_BASELINES = {
|
16 |
+
"Average ⬆️": 0.897 * 100,
|
17 |
+
"ARC": 0.80 * 100,
|
18 |
+
"HellaSwag": 0.95 * 100,
|
19 |
+
"MMLU": 0.898 * 100,
|
20 |
+
"TruthfulQA": 0.94 * 100,
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
def to_datetime(model_info: Tuple[str, Any]) -> datetime:
|
25 |
+
"""
|
26 |
+
Converts the lastModified attribute of the object to datetime.
|
27 |
+
|
28 |
+
:param model_info: A tuple containing the name and object.
|
29 |
+
The object must have a lastModified attribute
|
30 |
+
with a string representing the date and time.
|
31 |
+
:return: A datetime object converted from the lastModified attribute of the input object.
|
32 |
+
"""
|
33 |
+
name, obj = model_info
|
34 |
+
return datetime.strptime(obj.lastModified, "%Y-%m-%dT%H:%M:%S.%fZ").replace(tzinfo=timezone.utc)
|
35 |
+
|
36 |
+
|
37 |
+
def join_model_info_with_results(results_df: pd.DataFrame) -> pd.DataFrame:
|
38 |
+
"""
|
39 |
+
Integrates model information with the results DataFrame by matching 'Model sha'.
|
40 |
+
:param results_df: A DataFrame containing results information including 'Model sha' column.
|
41 |
+
:return: A DataFrame with updated 'Results Date' columns, which are synchronized with model information.
|
42 |
+
"""
|
43 |
+
# copy dataframe to avoid modifying the original
|
44 |
+
df = results_df.copy(deep=True)
|
45 |
+
|
46 |
+
# Filter out FLAGGED_MODELS to ensure graph is not skewed by mistakes
|
47 |
+
df = df[~df["model_name_for_query"].isin(FLAGGED_MODELS.keys())].reset_index(drop=True)
|
48 |
+
|
49 |
+
# load cache from disk
|
50 |
+
try:
|
51 |
+
with open("model_info_cache.pkl", "rb") as f:
|
52 |
+
model_info_cache = pickle.load(f)
|
53 |
+
except (EOFError, FileNotFoundError):
|
54 |
+
model_info_cache = {}
|
55 |
+
|
56 |
+
# Sort date strings using datetime objects as keys
|
57 |
+
sorted_dates = sorted(list(model_info_cache.items()), key=to_datetime, reverse=True)
|
58 |
+
df["Results Date"] = datetime.now().replace(tzinfo=timezone.utc)
|
59 |
+
|
60 |
+
# Define the date format string
|
61 |
+
date_format = "%Y-%m-%dT%H:%M:%S.%fZ"
|
62 |
+
|
63 |
+
# Iterate over sorted_dates and update the dataframe
|
64 |
+
for name, obj in sorted_dates:
|
65 |
+
# Convert the lastModified string to a datetime object
|
66 |
+
last_modified_datetime = datetime.strptime(obj.lastModified, date_format).replace(tzinfo=timezone.utc)
|
67 |
+
|
68 |
+
# Update the "Results Date" column where "Model sha" equals obj.sha
|
69 |
+
df.loc[df["Model sha"] == obj.sha, "Results Date"] = last_modified_datetime
|
70 |
+
return df
|
71 |
+
|
72 |
+
|
73 |
+
def create_scores_df(results_df: pd.DataFrame) -> pd.DataFrame:
|
74 |
+
"""
|
75 |
+
Generates a DataFrame containing the maximum scores until each result date.
|
76 |
+
|
77 |
+
:param results_df: A DataFrame containing result information including metric scores and result dates.
|
78 |
+
:return: A new DataFrame containing the maximum scores until each result date for every metric.
|
79 |
+
"""
|
80 |
+
# Step 1: Ensure 'Results Date' is in datetime format and sort the DataFrame by it
|
81 |
+
results_df["Results Date"] = pd.to_datetime(results_df["Results Date"])
|
82 |
+
results_df.sort_values(by="Results Date", inplace=True)
|
83 |
+
|
84 |
+
# Step 2: Initialize the scores dictionary
|
85 |
+
scores = {
|
86 |
+
"Average ⬆️": [],
|
87 |
+
"ARC": [],
|
88 |
+
"HellaSwag": [],
|
89 |
+
"MMLU": [],
|
90 |
+
"TruthfulQA": [],
|
91 |
+
"Result Date": [],
|
92 |
+
"Model Name": [],
|
93 |
+
}
|
94 |
+
|
95 |
+
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
96 |
+
for i, row in results_df.iterrows():
|
97 |
+
date = row["Results Date"]
|
98 |
+
for column in scores.keys():
|
99 |
+
if column == "Result Date":
|
100 |
+
if not scores[column] or scores[column][-1] <= date:
|
101 |
+
scores[column].append(date)
|
102 |
+
continue
|
103 |
+
if column == "Model Name":
|
104 |
+
scores[column].append(row["model_name_for_query"])
|
105 |
+
continue
|
106 |
+
current_max = scores[column][-1] if scores[column] else float("-inf")
|
107 |
+
scores[column].append(max(current_max, row[column]))
|
108 |
+
|
109 |
+
# Step 4: Convert the dictionary to a DataFrame
|
110 |
+
return pd.DataFrame(scores)
|
111 |
+
|
112 |
+
|
113 |
+
def create_plot_df(scores_df: pd.DataFrame) -> pd.DataFrame:
|
114 |
+
"""
|
115 |
+
Transforms the scores DataFrame into a new format suitable for plotting.
|
116 |
+
|
117 |
+
:param scores_df: A DataFrame containing metric scores and result dates.
|
118 |
+
:return: A new DataFrame reshaped for plotting purposes.
|
119 |
+
"""
|
120 |
+
# Sample columns
|
121 |
+
cols = ["Average ⬆️", "ARC", "HellaSwag", "MMLU", "TruthfulQA"]
|
122 |
+
|
123 |
+
# Initialize the list to store DataFrames
|
124 |
+
dfs = []
|
125 |
+
|
126 |
+
# Iterate over the cols and create a new DataFrame for each column
|
127 |
+
for col in cols:
|
128 |
+
d = scores_df[[col, "Model Name", "Result Date"]].copy().reset_index(drop=True)
|
129 |
+
d["Metric Name"] = col
|
130 |
+
d.rename(columns={col: "Metric Value"}, inplace=True)
|
131 |
+
dfs.append(d)
|
132 |
+
|
133 |
+
# Concatenate all the created DataFrames
|
134 |
+
concat_df = pd.concat(dfs, ignore_index=True)
|
135 |
+
|
136 |
+
# Sort values by 'Result Date'
|
137 |
+
concat_df.sort_values(by="Result Date", inplace=True)
|
138 |
+
concat_df.reset_index(drop=True, inplace=True)
|
139 |
+
|
140 |
+
# Drop duplicates based on 'Metric Name' and 'Metric Value' and keep the first (earliest) occurrence
|
141 |
+
concat_df.drop_duplicates(subset=["Metric Name", "Metric Value"], keep="first", inplace=True)
|
142 |
+
|
143 |
+
concat_df.reset_index(drop=True, inplace=True)
|
144 |
+
return concat_df
|
145 |
+
|
146 |
+
|
147 |
+
def create_metric_plot_obj(
|
148 |
+
df: pd.DataFrame, metrics: List[str], human_baselines: Dict[str, float], title: str
|
149 |
+
) -> Figure:
|
150 |
+
"""
|
151 |
+
Create a Plotly figure object with lines representing different metrics
|
152 |
+
and horizontal dotted lines representing human baselines.
|
153 |
+
|
154 |
+
:param df: The DataFrame containing the metric values, names, and dates.
|
155 |
+
:param metrics: A list of strings representing the names of the metrics
|
156 |
+
to be included in the plot.
|
157 |
+
:param human_baselines: A dictionary where keys are metric names
|
158 |
+
and values are human baseline values for the metrics.
|
159 |
+
:param title: A string representing the title of the plot.
|
160 |
+
:return: A Plotly figure object with lines representing metrics and
|
161 |
+
horizontal dotted lines representing human baselines.
|
162 |
+
"""
|
163 |
+
|
164 |
+
# Filter the DataFrame based on the specified metrics
|
165 |
+
df = df[df["Metric Name"].isin(metrics)]
|
166 |
+
|
167 |
+
# Filter the human baselines based on the specified metrics
|
168 |
+
filtered_human_baselines = {k: v for k, v in human_baselines.items() if k in metrics}
|
169 |
+
|
170 |
+
# Create a line figure using plotly express with specified markers and custom data
|
171 |
+
fig = px.line(
|
172 |
+
df,
|
173 |
+
x="Result Date",
|
174 |
+
y="Metric Value",
|
175 |
+
color="Metric Name",
|
176 |
+
markers=True,
|
177 |
+
custom_data=["Metric Name", "Metric Value", "Model Name"],
|
178 |
+
title=title,
|
179 |
+
)
|
180 |
+
|
181 |
+
# Update hovertemplate for better hover interaction experience
|
182 |
+
fig.update_traces(
|
183 |
+
hovertemplate="<br>".join(
|
184 |
+
[
|
185 |
+
"Model Name: %{customdata[2]}",
|
186 |
+
"Metric Name: %{customdata[0]}",
|
187 |
+
"Date: %{x}",
|
188 |
+
"Metric Value: %{y}",
|
189 |
+
]
|
190 |
+
)
|
191 |
+
)
|
192 |
+
|
193 |
+
# Update the range of the y-axis
|
194 |
+
fig.update_layout(yaxis_range=[0, 100])
|
195 |
+
|
196 |
+
# Create a dictionary to hold the color mapping for each metric
|
197 |
+
metric_color_mapping = {}
|
198 |
+
|
199 |
+
# Map each metric name to its color in the figure
|
200 |
+
for trace in fig.data:
|
201 |
+
metric_color_mapping[trace.name] = trace.line.color
|
202 |
+
|
203 |
+
# Iterate over filtered human baselines and add horizontal lines to the figure
|
204 |
+
for metric, value in filtered_human_baselines.items():
|
205 |
+
color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
|
206 |
+
location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
|
207 |
+
# Add horizontal line with matched color and positioned annotation
|
208 |
+
fig.add_hline(
|
209 |
+
y=value,
|
210 |
+
line_dash="dot",
|
211 |
+
annotation_text=f"{metric} human baseline",
|
212 |
+
annotation_position=location,
|
213 |
+
annotation_font_size=10,
|
214 |
+
annotation_font_color=color,
|
215 |
+
line_color=color,
|
216 |
+
)
|
217 |
+
|
218 |
+
return fig
|
219 |
+
|
220 |
+
|
221 |
+
# Example Usage:
|
222 |
+
# human_baselines dictionary is defined.
|
223 |
+
# chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
|