Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update src/populate.py
Browse files- src/populate.py +53 -9
src/populate.py
CHANGED
@@ -22,18 +22,57 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
22 |
return raw_data, df
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
27 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
28 |
all_evals = []
|
29 |
|
30 |
for entry in entries:
|
31 |
if ".json" in entry:
|
32 |
file_path = os.path.join(save_path, entry)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
38 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
39 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
@@ -44,10 +83,15 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
44 |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
45 |
for sub_entry in sub_entries:
|
46 |
file_path = os.path.join(save_path, entry, sub_entry)
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
53 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
|
|
22 |
return raw_data, df
|
23 |
|
24 |
|
25 |
+
# def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
+
# """Creates the different dataframes for the evaluation queues requestes"""
|
27 |
+
# entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
28 |
+
# all_evals = []
|
29 |
+
|
30 |
+
# for entry in entries:
|
31 |
+
# if ".json" in entry:
|
32 |
+
# file_path = os.path.join(save_path, entry)
|
33 |
+
# with open(file_path) as fp:
|
34 |
+
# print(file_path)
|
35 |
+
# print("\n")
|
36 |
+
# data = json.load(fp)
|
37 |
+
|
38 |
+
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
39 |
+
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
40 |
+
|
41 |
+
# all_evals.append(data)
|
42 |
+
# elif ".md" not in entry:
|
43 |
+
# # this is a folder
|
44 |
+
# sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
45 |
+
# for sub_entry in sub_entries:
|
46 |
+
# file_path = os.path.join(save_path, entry, sub_entry)
|
47 |
+
# with open(file_path) as fp:
|
48 |
+
# print(file_path)
|
49 |
+
# print("\n")
|
50 |
+
# data = json.load(fp)
|
51 |
+
|
52 |
+
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
53 |
+
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
54 |
+
# all_evals.append(data)
|
55 |
+
|
56 |
+
# pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
57 |
+
# running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
58 |
+
# finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
59 |
+
# df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
60 |
+
# df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
61 |
+
# df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
62 |
+
# return df_finished[cols], df_running[cols], df_pending[cols]
|
63 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
64 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
65 |
all_evals = []
|
66 |
|
67 |
for entry in entries:
|
68 |
if ".json" in entry:
|
69 |
file_path = os.path.join(save_path, entry)
|
70 |
+
try:
|
71 |
+
with open(file_path, encoding='utf-8') as fp:
|
72 |
+
data = json.load(fp)
|
73 |
+
except UnicodeDecodeError as e:
|
74 |
+
print(f"Unicode decoding error in {file_path}: {e}")
|
75 |
+
continue
|
76 |
|
77 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
78 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
|
|
83 |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
84 |
for sub_entry in sub_entries:
|
85 |
file_path = os.path.join(save_path, entry, sub_entry)
|
86 |
+
try:
|
87 |
+
with open(file_path, encoding='utf-8') as fp:
|
88 |
+
data = json.load(fp)
|
89 |
+
except json.JSONDecodeError:
|
90 |
+
print(f"Error reading {file_path}")
|
91 |
+
continue
|
92 |
+
except UnicodeDecodeError as e:
|
93 |
+
print(f"Unicode decoding error in {file_path}: {e}")
|
94 |
+
continue
|
95 |
|
96 |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
97 |
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|