|
import sys |
|
import io, os, stat |
|
import subprocess |
|
import random |
|
from zipfile import ZipFile |
|
import uuid |
|
import time |
|
import torch |
|
import torchaudio |
|
|
|
|
|
os.environ["COQUI_TOS_AGREED"] = "1" |
|
|
|
|
|
|
|
import langid |
|
import base64 |
|
import csv |
|
from io import StringIO |
|
import datetime |
|
|
|
import gradio as gr |
|
from scipy.io.wavfile import write |
|
from pydub import AudioSegment |
|
|
|
from TTS.api import TTS |
|
from TTS.tts.configs.xtts_config import XttsConfig |
|
from TTS.tts.models.xtts import Xtts |
|
from TTS.utils.generic_utils import get_user_data_dir |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
from huggingface_hub import HfApi |
|
|
|
|
|
api = HfApi(token=HF_TOKEN) |
|
repo_id = "coqui/xtts" |
|
|
|
|
|
print("Export newer ffmpeg binary for denoise filter") |
|
ZipFile("ffmpeg.zip").extractall() |
|
print("Make ffmpeg binary executable") |
|
st = os.stat("ffmpeg") |
|
os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC) |
|
|
|
|
|
print("Downloading if not downloaded Coqui XTTS V1.1") |
|
from TTS.utils.manage import ModelManager |
|
|
|
model_name = "tts_models/multilingual/multi-dataset/xtts_v1.1" |
|
ModelManager().download_model(model_name) |
|
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--")) |
|
print("XTTS downloaded") |
|
|
|
config = XttsConfig() |
|
config.load_json(os.path.join(model_path, "config.json")) |
|
|
|
|
|
if "ja" not in config.languages: |
|
config.languages.append("ja") |
|
|
|
model = Xtts.init_from_config(config) |
|
model.load_checkpoint( |
|
config, |
|
checkpoint_path=os.path.join(model_path, "model.pth"), |
|
vocab_path=os.path.join(model_path, "vocab.json"), |
|
eval=True, |
|
use_deepspeed=True, |
|
) |
|
model.cuda() |
|
|
|
|
|
DEVICE_ASSERT_DETECTED = 0 |
|
DEVICE_ASSERT_PROMPT = None |
|
DEVICE_ASSERT_LANG = None |
|
|
|
|
|
|
|
supported_languages = config.languages |
|
|
|
|
|
def predict( |
|
prompt, |
|
language, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
voice_cleanup, |
|
no_lang_auto_detect, |
|
agree, |
|
): |
|
if agree == True: |
|
if language not in supported_languages: |
|
gr.Warning( |
|
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown" |
|
) |
|
|
|
return ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
language_predicted = langid.classify(prompt)[ |
|
0 |
|
].strip() |
|
|
|
|
|
if language_predicted == "zh": |
|
|
|
language_predicted = "zh-cn" |
|
|
|
print(f"Detected language:{language_predicted}, Chosen language:{language}") |
|
|
|
|
|
if len(prompt) > 15: |
|
|
|
|
|
|
|
if language_predicted != language and not no_lang_auto_detect: |
|
|
|
|
|
gr.Warning( |
|
f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox" |
|
) |
|
|
|
return ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
if use_mic == True: |
|
if mic_file_path is not None: |
|
speaker_wav = mic_file_path |
|
else: |
|
gr.Warning( |
|
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios" |
|
) |
|
return ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
else: |
|
speaker_wav = audio_file_pth |
|
|
|
|
|
|
|
|
|
|
|
lowpassfilter = denoise = trim = loudness = True |
|
|
|
if lowpassfilter: |
|
lowpass_highpass = "lowpass=8000,highpass=75," |
|
else: |
|
lowpass_highpass = "" |
|
|
|
if trim: |
|
|
|
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02," |
|
else: |
|
trim_silence = "" |
|
|
|
if voice_cleanup: |
|
try: |
|
out_filename = ( |
|
speaker_wav + str(uuid.uuid4()) + ".wav" |
|
) |
|
|
|
|
|
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split( |
|
" " |
|
) |
|
|
|
command_result = subprocess.run( |
|
[item for item in shell_command], |
|
capture_output=False, |
|
text=True, |
|
check=True, |
|
) |
|
speaker_wav = out_filename |
|
print("Filtered microphone input") |
|
except subprocess.CalledProcessError: |
|
|
|
print("Error: failed filtering, use original microphone input") |
|
else: |
|
speaker_wav = speaker_wav |
|
|
|
if len(prompt) < 2: |
|
gr.Warning("Please give a longer prompt text") |
|
return ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
if len(prompt) > 200: |
|
gr.Warning( |
|
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage" |
|
) |
|
return ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
global DEVICE_ASSERT_DETECTED |
|
if DEVICE_ASSERT_DETECTED: |
|
global DEVICE_ASSERT_PROMPT |
|
global DEVICE_ASSERT_LANG |
|
|
|
print( |
|
f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}" |
|
) |
|
|
|
try: |
|
metrics_text = "" |
|
t_latent = time.time() |
|
|
|
|
|
try: |
|
( |
|
gpt_cond_latent, |
|
diffusion_conditioning, |
|
speaker_embedding, |
|
) = model.get_conditioning_latents(audio_path=speaker_wav) |
|
except Exception as e: |
|
print("Speaker encoding error", str(e)) |
|
gr.Warning( |
|
"It appears something wrong with reference, did you unmute your microphone?" |
|
) |
|
return ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
latent_calculation_time = time.time() - t_latent |
|
|
|
|
|
wav_chunks = [] |
|
|
|
""" |
|
print("I: Generating new audio...") |
|
t0 = time.time() |
|
out = model.inference( |
|
prompt, |
|
language, |
|
gpt_cond_latent, |
|
speaker_embedding, |
|
diffusion_conditioning, |
|
decoder="ne_hifigan", |
|
) |
|
inference_time = time.time() - t0 |
|
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds") |
|
metrics_text+=f"Time to generate audio: {round(inference_time*1000)} milliseconds\n" |
|
real_time_factor= (time.time() - t0) / out['wav'].shape[-1] * 24000 |
|
print(f"Real-time factor (RTF): {real_time_factor}") |
|
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n" |
|
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000) |
|
""" |
|
|
|
print("I: Generating new audio in streaming mode...") |
|
t0 = time.time() |
|
chunks = model.inference_stream( |
|
prompt, |
|
language, |
|
gpt_cond_latent, |
|
speaker_embedding, |
|
decoder="ne_hifigan", |
|
) |
|
|
|
first_chunk = True |
|
for i, chunk in enumerate(chunks): |
|
if first_chunk: |
|
first_chunk_time = time.time() - t0 |
|
metrics_text += f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n" |
|
first_chunk = False |
|
wav_chunks.append(chunk) |
|
print(f"Received chunk {i} of audio length {chunk.shape[-1]}") |
|
inference_time = time.time() - t0 |
|
print( |
|
f"I: Time to generate audio: {round(inference_time*1000)} milliseconds" |
|
) |
|
metrics_text += ( |
|
f"Time to generate audio: {round(inference_time*1000)} milliseconds\n" |
|
) |
|
|
|
wav = torch.cat(wav_chunks, dim=0) |
|
print(wav.shape) |
|
real_time_factor = (time.time() - t0) / wav.shape[0] * 24000 |
|
print(f"Real-time factor (RTF): {real_time_factor}") |
|
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n" |
|
|
|
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000) |
|
|
|
except RuntimeError as e: |
|
if "device-side assert" in str(e): |
|
|
|
print( |
|
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}", |
|
flush=True, |
|
) |
|
gr.Warning("Unhandled Exception encounter, please retry in a minute") |
|
print("Cuda device-assert Runtime encountered need restart") |
|
if not DEVICE_ASSERT_DETECTED: |
|
DEVICE_ASSERT_DETECTED = 1 |
|
DEVICE_ASSERT_PROMPT = prompt |
|
DEVICE_ASSERT_LANG = language |
|
|
|
|
|
|
|
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S") |
|
error_data = [ |
|
error_time, |
|
prompt, |
|
language, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
voice_cleanup, |
|
no_lang_auto_detect, |
|
agree, |
|
] |
|
error_data = [str(e) if type(e) != str else e for e in error_data] |
|
print(error_data) |
|
print(speaker_wav) |
|
write_io = StringIO() |
|
csv.writer(write_io).writerows([error_data]) |
|
csv_upload = write_io.getvalue().encode() |
|
|
|
filename = error_time + "_" + str(uuid.uuid4()) + ".csv" |
|
print("Writing error csv") |
|
error_api = HfApi() |
|
error_api.upload_file( |
|
path_or_fileobj=csv_upload, |
|
path_in_repo=filename, |
|
repo_id="coqui/xtts-flagged-dataset", |
|
repo_type="dataset", |
|
) |
|
|
|
|
|
print("Writing error reference audio") |
|
speaker_filename = ( |
|
error_time + "_reference_" + str(uuid.uuid4()) + ".wav" |
|
) |
|
error_api = HfApi() |
|
error_api.upload_file( |
|
path_or_fileobj=speaker_wav, |
|
path_in_repo=speaker_filename, |
|
repo_id="coqui/xtts-flagged-dataset", |
|
repo_type="dataset", |
|
) |
|
|
|
|
|
api.restart_space(repo_id=repo_id) |
|
else: |
|
if "Failed to decode" in str(e): |
|
print("Speaker encoding error", str(e)) |
|
gr.Warning( |
|
"It appears something wrong with reference, did you unmute your microphone?" |
|
) |
|
else: |
|
print("RuntimeError: non device-side assert error:", str(e)) |
|
gr.Warning("Something unexpected happened please retry again.") |
|
return ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
return ( |
|
gr.make_waveform( |
|
audio="output.wav", |
|
), |
|
"output.wav", |
|
metrics_text, |
|
speaker_wav, |
|
) |
|
else: |
|
gr.Warning("Please accept the Terms & Condition!") |
|
return ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
|
|
title = "Coqui🐸 XTTS" |
|
|
|
description = """ |
|
<div> |
|
<a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a> |
|
<a style='display:inline-block' href='https://discord.gg/5eXr5seRrv'><img src='https://discord.com/api/guilds/1037326658807533628/widget.png?style=shield' /></a> |
|
<a href="https://huggingface.co/spaces/coqui/xtts?duplicate=true"> |
|
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
</div> |
|
|
|
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 6-second audio clip. |
|
<br/> |
|
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible. |
|
<br/> |
|
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible. |
|
<br/> |
|
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">🐸TTS</a>, where our open-source inference and training code lives. |
|
<br/> |
|
<p>For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings. |
|
<br/> |
|
</p> |
|
<p>Language Selectors: |
|
Arabic: ar, Brazilian Portuguese: pt , Chinese: zh-cn, Czech: cs,<br/> |
|
Dutch: nl, English: en, French: fr, Italian: it, Polish: pl,<br/> |
|
Russian: ru, Spanish: es, Turkish: tr, Japanese: ja <br/> |
|
</p> |
|
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0d00920c-8cc9-4bf3-90f2-a615797e5f59" /> |
|
""" |
|
|
|
article = """ |
|
<div style='margin:20px auto;'> |
|
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p> |
|
<p>We collect data only for error cases for improvement.</p> |
|
</div> |
|
""" |
|
examples = [ |
|
[ |
|
"Once when I was six years old I saw a magnificent picture", |
|
"en", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Lorsque j'avais six ans j'ai vu, une fois, une magnifique image", |
|
"fr", |
|
"examples/male.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Als ich sechs war, sah ich einmal ein wunderbares Bild", |
|
"de", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Cuando tenía seis años, vi una vez una imagen magnífica", |
|
"es", |
|
"examples/male.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Quando eu tinha seis anos eu vi, uma vez, uma imagem magnífica", |
|
"pt", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Kiedy miałem sześć lat, zobaczyłem pewnego razu wspaniały obrazek", |
|
"pl", |
|
"examples/male.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Un tempo lontano, quando avevo sei anni, vidi un magnifico disegno", |
|
"it", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Bir zamanlar, altı yaşındayken, muhteşem bir resim gördüm", |
|
"tr", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Когда мне было шесть лет, я увидел однажды удивительную картинку", |
|
"ru", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Toen ik een jaar of zes was, zag ik op een keer een prachtige plaat", |
|
"nl", |
|
"examples/male.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"Když mi bylo šest let, viděl jsem jednou nádherný obrázek", |
|
"cs", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"当我还只有六岁的时候, 看到了一副精彩的插画", |
|
"zh-cn", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
False, |
|
False, |
|
True, |
|
], |
|
[ |
|
"かつて 六歳のとき、素晴らしい絵を見ました", |
|
"ja", |
|
"examples/female.wav", |
|
None, |
|
False, |
|
True, |
|
False, |
|
True, |
|
], |
|
] |
|
|
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Textbox( |
|
label="Text Prompt", |
|
info="One or two sentences at a time is better. Up to 200 text characters.", |
|
value="Hi there, I'm your new voice clone. Try your best to upload quality audio", |
|
), |
|
gr.Dropdown( |
|
label="Language", |
|
info="Select an output language for the synthesised speech", |
|
choices=[ |
|
"en", |
|
"es", |
|
"fr", |
|
"de", |
|
"it", |
|
"pt", |
|
"pl", |
|
"tr", |
|
"ru", |
|
"nl", |
|
"cs", |
|
"ar", |
|
"zh-cn", |
|
"ja", |
|
], |
|
max_choices=1, |
|
value="en", |
|
), |
|
gr.Audio( |
|
label="Reference Audio", |
|
info="Click on the ✎ button to upload your own target speaker audio", |
|
type="filepath", |
|
value="examples/female.wav", |
|
), |
|
gr.Audio( |
|
source="microphone", |
|
type="filepath", |
|
info="Use your microphone to record audio", |
|
label="Use Microphone for Reference", |
|
), |
|
gr.Checkbox( |
|
label="Use Microphone", |
|
value=False, |
|
info="Notice: Microphone input may not work properly under traffic", |
|
), |
|
gr.Checkbox( |
|
label="Cleanup Reference Voice", |
|
value=False, |
|
info="This check can improve output if your microphone or reference voice is noisy", |
|
), |
|
gr.Checkbox( |
|
label="Do not use language auto-detect", |
|
value=False, |
|
info="Check to disable language auto-detection", |
|
), |
|
gr.Checkbox( |
|
label="Agree", |
|
value=False, |
|
info="I agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml", |
|
), |
|
], |
|
outputs=[ |
|
gr.Video(label="Waveform Visual"), |
|
gr.Audio(label="Synthesised Audio", autoplay=True), |
|
gr.Text(label="Metrics"), |
|
gr.Audio(label="Reference Audio Used"), |
|
], |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
).queue().launch(debug=True, show_api=True) |
|
|
|
|