Spaces:
Sleeping
Sleeping
"""PIVOT Demo.""" | |
import gradio as gr | |
import numpy as np | |
from vip_runner import vip_runner | |
from vlms import GPT4V | |
# Adjust radius of annotations based on size of the image | |
radius_per_pixel = 0.05 | |
def run_vip( | |
im, | |
query, | |
n_samples_init, | |
n_samples_opt, | |
n_iters, | |
n_parallel_trials, | |
openai_api_key, | |
progress=gr.Progress(track_tqdm=False), | |
): | |
if not openai_api_key: | |
return [], 'Must provide OpenAI API Key' | |
if im is None: | |
return [], 'Must specify image' | |
if not query: | |
return [], 'Must specify description' | |
img_size = np.min(im.shape[:2]) | |
print(int(img_size * radius_per_pixel)) | |
# add some action spec | |
style = { | |
'num_samples': 12, | |
'circle_alpha': 0.6, | |
'alpha': 0.8, | |
'arrow_alpha': 0.0, | |
'radius': int(img_size * radius_per_pixel), | |
'thickness': 2, | |
'fontsize': int(img_size * radius_per_pixel), | |
'rgb_scale': 255, | |
'focal_offset': 1, # camera distance / std of action in z | |
} | |
action_spec = { | |
'loc': [0, 0, 0], | |
'scale': [0.0, 100, 100], | |
'min_scale': [0.0, 30, 30], | |
'min': [0, -300.0, -300], | |
'max': [0, 300, 300], | |
'action_to_coord': 250, | |
'robot': None, | |
} | |
vlm = GPT4V(openai_api_key=openai_api_key) | |
vip_gen = vip_runner( | |
vlm, | |
im, | |
query, | |
style, | |
action_spec, | |
n_samples_init=n_samples_init, | |
n_samples_opt=n_samples_opt, | |
n_iters=n_iters, | |
n_parallel_trials=n_parallel_trials, | |
) | |
for rst in vip_gen: | |
yield rst | |
examples = [ | |
{ | |
'im_path': 'ims/aloha.png', | |
'desc': 'a point between the fork and the cup', | |
}, | |
{ | |
'im_path': 'ims/robot.png', | |
'desc': 'the toy in the middle of the table', | |
}, | |
{ | |
'im_path': 'ims/parking.jpg', | |
'desc': 'a place to park if I am handicapped', | |
}, | |
{ | |
'im_path': 'ims/tools.png', | |
'desc': 'what should I use pull a nail' | |
}, | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# PIVOT: Prompting with Iterative Visual Optimization | |
[website](https://pivot-prompt.github.io/) | |
[view on huggingface](https://huggingface.co/spaces/pivot-prompt/pivot-prompt-demo/) | |
The demo below showcases a version of the PIVOT algorithm, which uses iterative visual prompts to optimize and guide the reasoning of Vision-Langauge-Models (VLMs). | |
Given an image and a description of an object or region, | |
PIVOT iteratively searches for the point in the image that best corresponds to the description. | |
This is done through visual prompting, where instead of reasoning with text, the VLM reasons over images annotated with sampled points, | |
in order to pick the best points. | |
In each iteration, we take the points previously selected by the VLM, resample new points around the their mean, and repeat the process. | |
To get started, you can use the provided example image and query pairs, or | |
upload your own images. | |
This demo uses GPT-4V, so it requires an OpenAI API key. | |
Hyperparameters to set: | |
* N Samples for Initialization - how many initial points are sampled for the first PIVOT iteration. | |
* N Samples for Optimiazation - how many points are sampled for subsequent iterations. | |
* N Iterations - how many optimization iterations to perform. | |
* N Ensemble Recursions - how many ensembles for recursive PIVOT. | |
Note that each iteration takes about ~10s, and each additional ensemble adds a multiple number of N Iterations. | |
After PIVOT finishes, the image gallery below will visualize PIVOT results throughout all the iterations. | |
There are two images for each iteration - the first one shows all the sampled points, and the second one shows which one PIVOT picked. | |
The Info textbox will show the final selected pixel coordinate that PIVOT converged to. | |
**To use the example images, right click on the image -> copy image, then click the clipboard icon in the Input Image box.** | |
""".strip()) | |
gr.Markdown( | |
'## Example Images and Queries\n Drag images into the image box below (Try safari on Mac if dragging does not work)' | |
) | |
with gr.Row(equal_height=True): | |
for example in examples: | |
gr.Image(value=example['im_path'], type='numpy', label=example['desc']) | |
gr.Markdown('## New Query') | |
with gr.Row(): | |
with gr.Column(): | |
inp_im = gr.Image( | |
label='Input Image', | |
type='numpy', | |
show_label=True, | |
value=examples[0]['im_path'], | |
) | |
inp_query = gr.Textbox( | |
label='Description', | |
lines=1, | |
placeholder=examples[0]['desc'], | |
) | |
with gr.Column(): | |
inp_openai_api_key = gr.Textbox( | |
label='OpenAI API Key (not saved)', lines=1 | |
) | |
with gr.Group(): | |
inp_n_samples_init = gr.Slider( | |
label='N Samples for Initialization', | |
minimum=10, | |
maximum=40, | |
value=25, | |
step=1, | |
) | |
inp_n_samples_opt = gr.Slider( | |
label='N Samples for Optimization', | |
minimum=3, | |
maximum=20, | |
value=10, | |
step=1, | |
) | |
inp_n_iters = gr.Slider( | |
label='N Iterations', minimum=1, maximum=5, value=3, step=1 | |
) | |
inp_n_parallel_trials = gr.Slider( | |
label='N Parallel Trials', minimum=1, maximum=3, value=1, step=1 | |
) | |
btn_run = gr.Button('Run') | |
with gr.Group(): | |
out_ims = gr.Gallery( | |
label='Images with Sampled and Chosen Points', | |
columns=4, | |
rows=1, | |
interactive=False, | |
object_fit="contain", height="auto" | |
) | |
out_info = gr.Textbox(label='Info', lines=1) | |
btn_run.click( | |
run_vip, | |
inputs=[ | |
inp_im, | |
inp_query, | |
inp_n_samples_init, | |
inp_n_samples_opt, | |
inp_n_iters, | |
inp_n_parallel_trials, | |
inp_openai_api_key, | |
], | |
outputs=[out_ims, out_info], | |
) | |
demo.launch() | |